

Chap 19 Alex

We have seen machine learning with different representations:

- Decision trees -- symbolic representation of various decision rules -- "disjunction of conjunctions"
- (2) Perceptron -- learning of weights that represent alinear decision surface classifying a set of objects into two groups

Different representations give rise to different <u>hypothesis</u> or <u>model spaces</u>. Machine <u>learning algorithms search</u> these model spaces for the <u>best fitting</u> <u>model</u>.

Perceptron Learning Revisited

Initialize \overline{w} and b to random values. repeat for each $(\overline{x}_i, y_i) \in D$ do if $\hat{f}(\overline{x}_i) \neq y_i$ then Update \overline{w} and b incrementally. end if end for until D is perfectly classified. return \overline{w} and b

Can we learn this decision surface? ... Yes! Multi-Layer Perceptronsl.

Multi-Layer Perceptrons

Artificial Neural Networks

Feed-forward with Backpropagation

<u>Note</u>: no linear decision surface exists for this dataset.

A multi-layer <u>Perceptron</u> capable of calculating <u>XOR</u>. The numbers within the perceptrons represent each perceptrons' explicit threshold. The numbers that annotate arrows represent the weight of the inputs. This net assumes that if the treshhold is not reached, zero (not -1) is output.

• Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Hidden Layer Representations

Target Function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

Hidden Layer Representations

Inputs	Outputs	Input	Hidden	Output	
9	P				
Off Off	Ap	$ 10000000 \rightarrow$.89 .04 .08	\rightarrow 1000000	1.0.0
Of the second		$ 01000000 \rightarrow$.01 .11 .88	\rightarrow 0100000	
		$ 00100000 \rightarrow$.01 $.97$ $.27$	\rightarrow 00100000	010
		$ 00010000 \rightarrow$.99 .97 .71	\rightarrow 00010000	111
		$ 00001000 \rightarrow$.03 $.05$ $.02$	\rightarrow 00001000	000
		$ 00000100 \rightarrow$.22 .99 .99	\rightarrow 00000100	
d d	6	$ 0000010 \rightarrow$.80 .01 .98	\rightarrow 00000010	
		$ 0000001 \rightarrow$.60 .94 .01	\rightarrow 00000001	

Hidden layers allow a network to invent appropriate internal representations.