
Training using Errors

 In training a neural network error is
very important

 Only errors allow us to refine the
network weights

 We continue to refine the weights until
the network classifies perfectly or with
an acceptable error margin

Errors in the Perceptron

!

)
f (x)

 Single layer -- we can update the weights directly!

Backpropagation(training_examples, , in, out, hidden)

Each training example is a pair of the form (x, y), where x is the vector of
network input values and y is the vector of target network output values.

 is the learning rate, in is the number of network inputs, out is the number of
output units and hidden is the number of units in the hidden layer.
The output from unit i is denoted oi, and the weight from unit i to unit j is denoted
wij.

• C r e a te a feed-forward network with in inputs, hidden hidden units, and out output
units.

• I nitialize all network weights to small random numbers (-.05 ~ .05).
• U ntil termination condition is met, do

o F or each (x, y) in training_examples, do

Propagate the input forward through the network :

• I nput the instance x to the network and compute the output ou of
every unit u in the network.

Propagate the errors backward through the network:
• F or each network output unit k, calculate its error term k

€

δk ← ok (1− ok)(y k − ok)

• F or each hidden unit h, calculate its error term h

€

δh ← oh (1− oh) whkδk
k∈outputs
∑

• U p d a te each network weight wji

€

wij ← wij + Δwij , with Δwij = −ηδ joi

 Define the network error as

for some x∈X, where i is an
index over the output units.

 Let Ex(w) be the error Ex as
a function of the weights w.

 Use the gradient (slope) of
the error surface to guide
the search towards
appropriate weights:

Neural Network Learning

ij

x
ij w

Ew ∂

∂
−=Δ η

E x
(w
)

w0

w1

 ,))((2! "=
i

iix oxfE

ji

x

ji
w

E
w

!

!
"=# $

!

E
x

= (y
k
" o

k
)
2

k

#

Neural Network Learning

This is utilized during backpropagation:
 The error terms in Δwji are based on derivatives of the

transfer function,

 Backpropagation converges on a set of weights that
minimize the value of the error surface (possible local
minima!)

.ij
ij

x
ij o

w
Ew ηδη −=
∂

∂
−=Δ

.ij

ji

x

ji o
w

E
w !"! #=

$

$
#=%

