Propositional Logic: Rules of Inference

Section 1.6 (the first couple of parts only)

Rules of Inference for Propositional Logic: Modus Ponens

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

Example:

Let *p* be "It is snowing." Let *q* be "I will study discrete math."

"If it is snowing, then I will study discrete math."
"It is snowing."

"Therefore, I will study discrete math."

Rules of Inference for Propositional Logic: Modus Ponens

$$\begin{array}{c} p \to q \\ \hline p \\ \hline \therefore q \end{array}$$

In order to see that this is a valid reasoning step we can replace it with the following proposition,

$$(p \land (p \rightarrow q)) \rightarrow q$$

and show that it is a tautology, that is, it holds for all assignments of p and q.

p	q	$p \rightarrow q$	p ^ (p→q)	$(p \land (p \rightarrow q)) \rightarrow q$
Т	T	T	T	T
Т	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Modus Tollens

$$\begin{array}{c}
p \to q \\
\neg q \\
\hline
\vdots \neg p
\end{array}$$

Corresponding Tautology:

$$(\neg p \land (p \rightarrow q)) \rightarrow \neg q$$

Example:

Let *p* be "it is snowing." Let *q* be "I will study discrete math."

"If it is snowing, then I will study discrete math."
"I will not study discrete math."

"Therefore, it is not snowing."

Simplification

$$\frac{p \wedge q}{\therefore q}$$

Corresponding Tautology:

 $(p \land q) \rightarrow p$

Example:

Let *p* be "I will study discrete math." Let *q* be "I will study English literature."

"I will study discrete math and English literature"

"Therefore, I will study discrete math."

Conjunction

$$\frac{p}{q}$$

$$\therefore p \land q$$

Corresponding Tautology:

$$((p) \land (q)) \rightarrow (p \land q)$$

Example:

Let *p* be "I will study discrete math." Let *q* be "I will study English literature."

"I will study discrete math."

"I will study English literature."

"Therefore, I will study discrete math and I will study English literature."

Using the Rules of Inference to Build Valid Arguments

- A *valid argument* is a sequence of statements. Each statement is either a premise or follows from previous statements by rules of inference. The last statement is called conclusion.
- A valid argument takes the following form:

S₁
S₂
.
.
.

... C

Valid Arguments

Example 1: From the single proposition

$$p \land (p \rightarrow q)$$

Show that *q* is a conclusion.

Solution:

Step

- 1. $p \wedge (p \rightarrow q)$
- 2. p
- 3. $p \rightarrow q$
- 4. q

Reason

Premise

Conjunction using (1)

Conjunction using (1)

Modus Ponens using (2) and (3)

Valid Arguments

Example 2:

• With these hypotheses:

"It is not sunny this afternoon and it is colder than yesterday."

"We will go swimming only if it is sunny."

"If we do not go swimming, then we will take a canoe trip."

"If we take a canoe trip, then we will be home by sunset."

Using the inference rules, construct a valid argument for the conclusion:

"We will be home by sunset."

Solution:

1. Choose propositional variables:

p : "It is sunny this afternoon."

r: "We will go swimming."

q: "It is colder than yesterday."

s: "We will take a canoe trip."

t: "We will be home by sunset."

2. Translation into propositional logic:

Hypotheses: $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, s \rightarrow t$

Conclusion: t

Valid Arguments

3. Construct the Valid Argument

Step	Reason
1. $\neg p \land q$	Premise
$2. \neg p$	Simplification using (1)
$3. r \rightarrow p$	Premise
$4. \neg r$	Modus tollens using (2) and (3)
$5. \ \neg r \rightarrow s$	Premise
6. s	Modus ponens using (4) and (5)
7. $s \rightarrow t$	Premise
8. t	Modus ponens using (6) and (7)