Predicate Logic: Predicates and Quantifiers

Section 1.4

Propositional Logic Not Enough

• If we have:

"All men are mortal."

"Socrates is a man."

∴ "Socrates is mortal"

Compare to:

"If it is snowing, then I will study discrete math."
"It is snowing."

∴ "I will study discrete math."

- This *not* a valid argument in propositional logic.
- → Need a language that talks about objects, their properties, and their relations.

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: *x*, *y*, *z*
 - Predicates: *P*, *M*
 - Quantifiers: ∀,∃
- *Propositional functions* are a generalization of propositions.
 - They contain variables and a predicate, e.g., P(x)
 - Variables can be replaced by elements from their *domain*, e.g. the domain of integers.

Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain (or bound by a quantifier, as we will see later).
- The statement P(x) is said to be the value of the propositional function P(x) at x.
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
 - P(-3) is false.
 - P(0) is false.
 - P(3) is true.
- Often the domain is denoted by *U*. So in this example *U* is the integers.

Examples of Propositional Functions

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values:

```
R(2,-1,5)
Solution: F
R(3,4,7)
Solution: T
R(x, 3, z)
Solution: Not a Proposition
```

• Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

```
Q(2,-1,3)
Solution: T
Q(3,4,7)
Solution: F
Q(x, 3, z)
Solution: Not a Proposition
```

Compound Expressions

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

```
P(3) \vee P(-1) Solution: T P(3) \wedge P(-1) Solution: F
```

 $P(3) \rightarrow P(-1)$ Solution: F

 $P(3) \rightarrow P(-1)$ Solution: T

• Expressions with variables are not propositions and therefore do not have truth values. For example,

 $P(3) \wedge P(y)$ $P(x) \rightarrow P(y)$

• When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

- We need *quantifiers* to express the meaning of English words including *all* and *some*:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - Universal Quantifier, "For All," symbol: ∀
 - Existential Quantifier, "There Exists," symbol: **3**
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
- $\forall x P(x)$ asserts P(x) is true for every x in the domain.
- $\exists x P(x)$ asserts P(x) is true for some x in the domain.
- The quantifiers are said to <u>bind</u> the variable *x* in these expressions.

Universal Quantifier

• $\forall x P(x)$ is read as "For All x, P(x)"

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- If P(x) denotes "x is even" and U is the integers, then $\forall x$ P(x) is false.

Existential Quantifier

- $\exists x P(x)$ is read as "There Exists an x such that P(x)" Examples:
 - If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
 - If P(x) denotes "x < 0" and U is the positive integers, then $\exists x \ P(x)$ is false.
 - If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.

Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x \ P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but it would not be practical to implement it this way...

Properties of Quantifiers

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain U.

• Examples:

- If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
- If *U* is the negative integers and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
- If *U* consists of 3, 4, and 5, and P(x) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true. But if P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.
- To avoid any confusion just put brackets right after every quantifier you use, i.e.
 - $\forall x [P(x) \lor Q(x)]$
- Proposition then becomes very easy to read

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If U is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x [S(x) \rightarrow J(x)]$.

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, translate as $\exists x J(x)$

Solution 1: But if *U* is all people, then translate as $\exists x [S(x) \land J(x)]$

Returning to the Socrates Example

• Introduce the propositional functions man(x) denoting "x is a man" and mortal(x) denoting "x is mortal." Specify the domain as all people.

• The two premises are: $\forall x[man(x) \rightarrow mortal(x)]$ man(Socrates)

• The conclusion is: :. mortal(Socrates)

 Later we will show how to prove that the conclusion follows from the premises.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Equivalences

- To show that two quantified expressions are equivalent, we need to show that both sides will be true under all predicates and all domains.
- Here is a way to prove it.

$$\forall x[\neg \neg P(x)] \equiv \forall x[P(x)]$$

Assume that the right side holds, also

assume that $a \in U$ is any element in U,

where U is any domain, then

 $\forall x[P(x)] \text{ implies } P(a) \text{ implies } \neg \neg P(a) \text{ implies } \forall x[\neg \neg P(x)]$

Now, assume that the left side holds, then

 $\forall x [\neg \neg P(x)] \text{ implies } \neg \neg P(a) \text{ implies } P(a) \text{ implies } \forall x [P(x)]$

$$\therefore \forall x [\neg \neg P(x)] \equiv \forall x [P(x)]$$

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken Java."
 This implies that "There is a student in your class who has not studied Java."
 - Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (continued)

• Now Consider $\exists x J(x)$

"There is a student in this class who has taken a course in Java."

Where J(x) is "x has taken a course in Java."

 Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"

Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

• It can be shown that the following holds:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Translation from English to Logic

Examples:

"Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x [S(x) \land M(x)]$$

"Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada."

$$\forall x [S(x) \rightarrow (M(x) \lor C(x))]$$

Nested Quantifiers

Section 1.5

Nested Quantifiers

- Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.
- Example: "Every real number has an inverse" is $\forall x \exists y[x + y = 0]$

where the domains of x and y are the real numbers.

Thinking of Nested Quantification

- Nested Loops
 - To see if $\forall x \forall y [P(x,y)]$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - If for some pair of x and y, P(x,y) is false, then $\forall x \forall y [P(x,y)]$ is false and both the outer and inner loop terminate.

 $\forall x \forall y [P(x,y)]$ is true if the outer loop ends after stepping through each x.

- To see if $\forall x \exists y [P(x,y)]$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - The inner loop ends when a pair x and y is found such that P(x, y) is true.
 - If no *y* is found such that P(x, y) is true the outer loop terminates as $\forall x \exists y [P(x,y)]$ has been shown to be false.

 $\forall x \exists y [P(x,y)]$ is true if the outer loop ends after stepping through each x.

• If the domains of the variables are infinite, then this process can not actually be carried out.

Order of Quantifiers

The order of quantification matters!

Examples:

- 1. Let P(x,y) be the statement "x + y = y + x." Assume that U is the real numbers. Then $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value.
- 2. However, let Q(x,y) be the statement "x + y = 0." Assume that U is the real numbers. Then $\forall x \exists y P(x,y)$ is true, but $\exists y \ \forall x P(x,y)$ is false.

Translating Nested Quantifiers into English

Example: Translate the statement

$$\forall x [C(x) \lor \exists y [C(y) \land F(x,y)]]$$

where C(x) is "x has a computer," and F(x,y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution: First we can rewrite the expression:

$$\forall x [C(x) \lor \exists y [C(y) \land F(x,y)]] \equiv \forall x [C(x)] \lor \forall x \exists y [F(x,y) \land C(y)]$$

Every student in your school has a computer or has a friend who has a computer.

Translating Mathematical Statements into Predicate Logic

Example: Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

- 1. Rewrite the statement to make the implied quantifiers and domains explicit:
 - "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- 2. Introduce the variables *x* and *y*, and specify the domain, to obtain:
 - "For all positive integers x and y, x + y is positive."
- 3. The result is:

$$\forall x \ \forall \ y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$$

where the domain of both variables consists of all integers