Introduction to Proofs

Section 1.7




~ Proofs of MW

Statements

* A proofis a valid argument that establishes the truth
of a statement.
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Terminology

A theorem is a statement that can be shown to be true using:
e definitions
e other theorems
e axioms (statements which are given as true)
 rules of inference

A lemma is a ‘helping theorem’ or a result which is needed to
prove a theorem.

A corollary is a result which follows directly from a theorem.
Less important theorems are sometimes called propositions.

A conjecture is a statement that is being proposed to be true.
Once a proof of a conjecture is found, it becomes a theorem. It
may turn out to be false.
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Forms of Theorems

Many theorems assert that a property holds for all
elements in a domain, such as the integers, the real
numbers, or some of the discrete structures that we

will study in this class.

e Often the universal quantifier (needed for a precise
statement of a theorem) is omitted by standard
mathematical convention.

For example, the statement:
“If x > y, where x and y are positive real numbers, then x> > y2>”

really means
“For all positive real numbers x and y, if x >y, then x> > y>.”
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Proving Theorems

Many theorems have the form:
vz (P(r) = Q(z))

To prove them, we show that where c is an arbitrary

element of the domain, P(c) — Q(c)

By universal generalization the truth of the original
formula follows.

So, we must prove something of the form: p — ¢
where is the p = P(c) and q=Q(c) are propositions.



Proving Conditional Statements: p — g

Trivial Proof: If we know q is true, then
p — q is true as well.

“If it is raining then 1=1."
Vacuous Proof: If we know p is false then
p — q is true as well.

“It I am both rich and poor then 2 + 2 =5.7

| Even though these examples seem silly, both trivial and
vacuous proofs are often used in mathematical induction]



/ % _—

Even and Odd Integers

Definition: The integer n is even if there exists an
integer k such that n = 2k, and n is odd if there exists
an integer k, such that n = 2k + 1. Note that every

integer is either even or odd and no integer is both
even and odd.

We will need this basic fact about the integers in
some of the example proofs to follow.
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Proving Conditional Statements: p — g

Direct Proof: Assume that p is true. Use rules of

inference, axioms, and logical equivalences to show that
g must also be true.

Example: Give a direct proof of the theorem “If n is an odd
integer, then n? is odd.

Solution: Assume that n is odd. Then n = 2k + 1 for an
integer k. Squaring both sides of the equation, we get:

n2 = (2k +1)2 = 42+ 4k+1=2(2k2+ 2k) + 1=2r+ 1,
here r= 2k?+ 2k is an integer.

We have proved that if n is an odd integer, then n? is an odd
integer.

<4
( «@ marks the end of the proof. I often use (QED) instead. )



Proving Conditional Statements: p — ¢

* Proof by Contraposition: Assume —q and show —p is true
also. This is sometimes called an indirect proof method. If
we give a direct proof of =g = —p then we have a proof of p
-, q,

Why does this work?
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Contrapositive

Example: Prove that if n is an integer and n? is odd, then n

is odd.

Solution: Assume n is not odd, therefore even. So, n =
2k for some integer k. Thus

n® = (2k)? = 4k> = 2(2k*) = 2m, with m = 2k’

Therefore n? is even, not odd. Since we have shown

—gq— —p, p— g must hold as well. -
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Theorems that are Biconditional
Statements

To prove a theorem that is a biconditional statement,
that is, a statement of the form p & g, we show that
p— gand g —p are both true.

Example: Prove the theorem: “If nis an integer, then nis
odd if and only if n* is odd.”

Solution: We have already shown (previous slides) that
both p -»gand g —p. Therefore we can conclude p < gq.

Sometimes iff is used as an abbreviation for “if an only if,” as in
“If nis an integer, then nis odd iif n? is odd.”
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Proving Conditional Statements: p — g

Proof by Contradiction: (AKA reductio ad absurdum).

To prove the conditional statement, assume —g and
derive a contradiction such as r A —=r_using p. Since
we have shown that =g = (r A =r=F) is true, it
follows that the contrapositive T—q also holds.
Therefore p—gq.
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Proof by Contradiction

Example: Prove by contradiction that if you pick 22 days from the
calendar, at least 4 must fall on the same day of the week.

Solution: Let

p = “you pick 22 days from the calendar” and

g="at least 4 days must fall on the same day of the week”,
now assume

—q="no more than 3 days fall on the same day of the week”.
Now use p to derive a contradiction: p implies 3 weeks and 1 day,
which implies that one day will be repeated 4 times. This is a
contradiction to our assumption —q, therefore q. (QED)



