Sets

Section 2.1

Sets

- A *set* is an unordered collection of objects.
 - the students in this class
 - the chairs in this room
- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
- The notation *a* ∈ *A* denotes that *a* is an element of the set *A*.
- If a is not a member of A, write $a \notin A$

Describing a Set: Roster Method (listing the members)

- $S = \{a, b, c, d\}$
- Order not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

• Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

 Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,....,z\}$$

Some Important Sets

```
N = natural numbers = {0,1,2,3....}
Z = integers = {...,-3,-2,-1,0,1,2,3,....}
Z<sup>+</sup> = positive integers = {1,2,3,.....}
R = set of real numbers
R<sup>+</sup> = set of positive real numbers
C = set of complex numbers
Q = set of rational numbers
```

Set-Builder Notation

• Specify the property or properties that all members must satisfy:

```
S = \{x \mid x \text{ is a positive integer less than } 100\}

O = \{x \mid x \text{ is an odd positive integer less than } 10\}

O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}
```

A predicate may be used:

$$S = \{x \mid P(x)\}$$

- Example: $S = \{x \mid Prime(x)\}$
- Positive rational numbers:

$$\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$$

Interval Notation

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

closed interval [a,b] open interval (a,b)

Universal Set and Empty Set

- The *universal set U* is the set containing everything currently under consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Contents depend on the context.
- The empty set is the set with no elements. Symbolized Ø, but {} also used.

Some things to remember

Sets can be elements of sets.

```
{{1,2,3},a, {b,c}}
{N,Z,Q,R}
```

 The empty set is different from a set containing the empty set.

```
\emptyset \neq \{\emptyset\}
```

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$
- We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \to x \in B)$ is true.
 - Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Another look at Equality of Sets using Subsets

• Recall that two sets A and B are equal, denoted by A = B, iff $\forall x (x \in A \leftrightarrow x \in B)$

• Using logical equivalences we have that A = B iff

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Set Cardinality

Definition: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.

Definition: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

Examples:

- $|\emptyset| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of <u>all subsets</u> of a set A, denoted P(A), is called the *power set* of A.

Example: If
$$A = \{a,b\}$$
 then $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$

• If a set has n elements, then the cardinality of the power set is 2^n .

Tuples

- The ordered n-tuple $(a_1,a_2,....,a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.
- Two n-tuples are equal if and only if their corresponding elements are equal.
- 2-tuples are called ordered pairs.
- The ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.

Cartesian Product

Definition: The *Cartesian Product* of two sets *A* and *B*, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a,b) | a \in A \land b \in B\}$$

Example:

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Truth Sets of Quantifiers

Given a predicate *P* and a domain *D*, we define the truth set of *P* to be the set of elements in *D* for which *P*(*x*) is true. The truth set of *P*(x) is denoted by

$$\{x \in D | P(x)\}$$

• **Example**: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set $\{-1,1\}$

Set Operations

Section 2.2

Union

• **Definition**: Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x|x\in A\vee x\in B\}$$

• **Example**: What is $\{1,2,3\} \cup \{3,4,5\}$?

Solution: {1,2,3,4,5}

Venn Diagram for $A \cup B$

Intersection

• **Definition**: The *intersection* of sets A and B, denoted by $A \cap B$, is

$$\{x|x\in A\land x\in B\}$$

- Note if the intersection is empty, then *A* and *B* are said to be *disjoint*.
- **Example**: What is? $\{1,2,3\} \cap \{3,4,5\}$?

Solution: {3}

• Example:What is?

$$\{1,2,3\} \cap \{4,5,6\}$$
?

Solution: Ø

Venn Diagram for $A \cap B$

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set U - A

$$\bar{A} = \{ x \in U \mid x \notin A \}$$

(The complement of A is sometimes denoted by A^c .)

Example: If *U* is the positive integers less than 100, what is the complement of $\{x \mid x > 70\}$

Solution: $\{x \mid x \le 70\}$

Venn Diagram for Complement

Difference

Definition: Let *A* and *B* be sets. The *difference* of *A* and *B*, denoted by *A* − *B*, is the set containing the elements of *A* that are not in *B*. The difference of *A* and *B* is also called the complement of *B* with respect to *A*.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap B^c$$

Venn Diagram for A - B

The Cardinality of the Union of Two Sets

• Inclusion-Exclusion $|A \cup B| = |A| + |B| - |A \cap B|$

Venn Diagram for A, B, $A \cap B$, $A \cup B$

 Cardinality – number of unique elements – the Venn diagram makes it easy to see why we need that last term.

Set Identities

Identity laws

$$A \cup \emptyset = A$$
 $A \cap U = A$

Domination laws

$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

Idempotent laws

$$A \cup A = A$$
 $A \cap A = A$

Complementation law

$$\overline{(\overline{A})} = A$$

Continued on next slide \rightarrow

Set Identities

Commutative laws

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Continued on next slide \rightarrow

Set Identities

De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws

$$A \cup (A \cap B) = A$$
 $A \cap (A \cup B) = A$

Complement laws

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

Proving Set Identities

- The most common way to prove set identities:
 - Prove that each set (side of the identity) is a subset of the other.

Proof of Second De Morgan Law

Example: Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Solution: We prove this identity by showing that:

1)
$$\overline{A \cap B} \subset \overline{A} \cup \overline{B}$$
 and

$$\mathbf{2)} \quad \overline{A} \cup \overline{B} \subset \overline{A \cap B}$$

Proof of Second De Morgan Law

These steps show that:

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$

$$x \in \overline{A \cap B}$$

$$x \notin A \cap B$$

$$\neg((x \in A) \land (x \in B))$$

$$\neg(x \in A) \lor \neg(x \in B)$$

$$x \notin A \lor x \notin B$$

$$x \in \overline{A} \lor x \in \overline{B}$$

$$x \in \overline{A} \cup \overline{B}$$

by assumption
defn. of complement
defn. of intersection
1st De Morgan Law for Prop Logic
defn. of negation
defn. of complement
defn. of union

Proof of Second De Morgan Law

These steps show that:

$$x \in \overline{A} \cup \overline{B}$$

$$(x \in \overline{A}) \lor (x \in \overline{B})$$

$$(x \notin A) \lor (x \notin B)$$

$$\neg (x \in A) \lor \neg (x \in B)$$

$$\neg ((x \in A) \land (x \in B))$$

$$\neg (x \in A \cap B)$$

$$x \in \overline{A \cap B}$$

$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$

by assumption

defn. of union

defn. of complement

defn. of negation

by 1st De Morgan Law for Prop Logic

defn. of intersection

defn. of complement

