Section 2.3

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

 Functions are sometimes called mappings or transformations.

• A function $f: A \to B$ can also be defined as a *subset* of $A \times B$ written as

$$f \subseteq A \times B$$

• However, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

and
$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2 [[(x, y_1) \in f \land (x, y_2) \in f] \rightarrow y_1 = y_2]$$

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- *A* is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- If f(a) = b,
 - then *b* is called the *image* of *a* under *f*.
 - *a* is called the *preimage* of *b*.
- The range of f is the set of all images of points in A under f. We denote it by f(A).
- Two functions are *equal* when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Representing Functions

- Functions may be specified in different ways:
 - An explicit statement of the assignment. Students and grades example (a set of pairs!)
 - A formula.

$$f(x) = x + 1$$

- A computer program.
 - e.g. A Java program that when given an integer *n*, produces the *n*th Fibonacci Number

Surjections

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is onto.

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Bijections

Definition: A function f is a *one-to-one* correspondence, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Showing that f is one-to-one or onto

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that f is one-to-one or onto

Example 1: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, *f* is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to {1,2,3,4}, *f* would not be onto.

Example 2: Is the function $f(x) = x^2$ from the set of integers onto?

Solution: No, f is not onto because there is no integer x with $x^2 = -1$, for example.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = yNo inverse exists unless f is a bijection. Why?

Inverse Functions

Questions

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{i} reverses the correspondence given by f, so $f^{i}(1) = c$, $f^{i}(2) = a$, and $f^{i}(3) = b$.

Questions

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^1 reverses the correspondence so $f^1(y) = y - 1$.

Questions

Example 3: Let $f: \mathbf{R} \to \mathbf{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function *f* is not invertible because it is not one-to-one .

Composition

• **Definition**: Let $f: B \to C$, $g: A \to B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by

$$(f \circ g)(x) = f(g(x))$$

Composition

Composition

Example 1: If $f(x) = x^2$ and g(x) = 2x + 1, then

$$f(g(x)) = (2x+1)^2$$

and

$$g(f(x)) = 2x^2 + 1$$

Composition Questions

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition $f \circ g$ is defined by

$$f \circ g(a) = f(g(a)) = f(b) = 2.$$

 $f \circ g(b) = f(g(b)) = f(c) = 1.$
 $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Composition Questions

Example 2: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs of Functions

• Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } b=f(a)\}.$

Graph of
$$f(n) = 2n + 1$$
 from Z to Z

Graph of
$$f(x) = x^2$$
 from Z to Z

Some Important Functions

• The *floor* function, denoted $f(x) = \lfloor x \rfloor$

is the largest integer less than or equal to *x*.

The ceiling function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to *x*

Example:

$$[3.5] = 4 \qquad [3.5] = 3$$

$$[-1.5] = -1 \quad |-1.5| = -2$$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Floor and Ceiling Functions

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

$$(2) \quad x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

$$(4b) \quad \lceil x + n \rceil = \lceil x \rceil + n$$

Proving Properties of Functions

Example: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $0 < \varepsilon < \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and |2x| = 2n, since $0 \le 2\varepsilon < 1$.
- [x + 1/2] = n, since $x + \frac{1}{2} = n + (1/2 + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, [2x] = 2n and [x] + [x + 1/2] = n + n = 2n.

Case 2: $1 > \varepsilon \ge \frac{1}{2}$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ implies [2x] = 2n + 1, since $0 \le 2\varepsilon 1 < 1$.
- $[x+1/2] = [n+(1/2+\epsilon)] = [n+1+(\epsilon-1/2)] = n+1$ since $0 \le \epsilon 1/2 < 1$.
- Hence, [2x] = 2n + 1 and [x] + [x + 1/2] = n + (n + 1) = 2n + 1.

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdots (n-1) \cdot n,$$
 $f(0) = 0! = 1$

Examples:

$$f(1) = 1! = 1$$

 $f(2) = 2! = 1 \cdot 2 = 2$
 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$
 $f(20) = 2,432,902,008,176,640,000$.

Recursive Definition:

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n(n-1) & \text{if } n > 0 \end{cases}$$

$$n \in \mathbb{N}$$