Mathematical Induction

Section 5.1




Priimbingan
Infinite Ladder

Suppose we have an infinite ladder and the following

capabilities:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we
can reach the next rung.

Then,
From (1), we can reach the first rung. Then
by applying (2), we can reach the second
rung. Applying (2) again, the third rung.
And so on. We can apply (2) any number
of times to reach any particular rung, no
matter how high up.

This example motivates proof by
mathematical induction.
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Principle of Mathematical Induction

Principle of Mathematical Induction: To prove that P(n) is true for all
positive integers n, we complete these steps:

* Basis Step: Show that P(1) is true.

e Inductive Step: Show that P(k) - P(k + 1) is true for all positive
integers k.

To complete the inductive step, we assume the inductive hypothesis
that P(k) holds for an arbitrary integer k and show that P(k + 1) is
true, which then makes the implication true.

Climbing an Infinite Ladder Example:
e BASIS STEP: By (1), we can reach rung 1.

e INDUCTIVE STEP: Assume the inductive hypothesis that we can reach
rung k. Then by (2), we can reach rung k + 1.

Hence, P(k) — P(k + 1) is true for all positive integers k. We can reach
every rung on the ladder.



Important Points About Using
Mathematical Induction

Mathematical induction can be expressed as the
rule of inference

[P(1) AVk[P(k) » P(k+1)]] » Vn P(n),
where the domain is the set of positive integers.

In a proof by mathematical induction, we do not
assume that P(k) is true for all positive integers!

But, we show that if we assume that P(k) is true,
then P(k + 1) must also be true.




- Proving a Summation Formula by

Mathematical Induction

Example: Show that: ii 7 n(n+1)
2

i=1
Proof: Proof by induction.

o BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.
e INDUCTIVE STEP: Assume true for P(k). The inductive hypothesis

is k
E . k(k+1)
l =
= 2
Under this assumption we show that P(k+1) is also true,
142+...+k+(k+])= AUl +(k+1) (by inductive hypothesis)
X k(k+1)+2(k+1)
5
X (k+1)(k+2)
2 <

% (k+D)((k+1)+1)
9,




~Conjecturing and Proving Correct a
Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers.
Then prove your conjecture.

Solution: We have: 1=1,1+3=4,1+3+5=9, 1+3+5+4+7=16, 14+3+5+7+9=25.
e We can conjecture that the sum of the first n positive odd integers is n?,

1+3+54+ 4+ 2n —1) =n?.
*  We prove the conjecture correct with mathematical induction.
e BASIS STEP: P(1) is true since (2(1)-1)=1= 12.
e INDUCTIVE STEP: P(k) — P(k + 1) for every positive integer k.
Assume the inductive hypothesis P(k) holds and then show that P(k+1) holds has well.

Inductive Hypothesis: 1 + 3 + 5 + -+ (2k — 1) =k?

e So, assuming P(k), it follows that:
1+3+5+...+(2k—1)+(2(k+1)—1) =1+3+5+...+2k-1D+R2k+1)
= k> +(2k +1) (by inductive hypothesis)
=k*+2k+1

=(k+1)

e Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n positive odd <4
integers is n?.
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Proving Inequalities

Example: Use mathematical induction to prove that n < 2" for all
positive integers n.

Solution: Let P(n) be the proposition that n < 2™,
e BASIS STEP: P(1) is true since 1 < 21 = 2.

e INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an arbitrary

positive integer k. We now show that
P(k + 1) holds. Since by the inductive hypothesis, k < 2%, it follows
that: k+1<2"+1 (by the inductive hypothesis)
<2 +2" (using property 1< p? for all p,g € N)
=2-2F
W 2k+1
Therefore n < 2™ holds for all positive integers n.
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Proving Inequalities

Example: Use mathematical induction to prove that 2" <
n!, for every integer n = 4.
Solution: Let P(n) be the proposition that 2" < n!.

o BASIS STEP: P(4) is true since 24 =16 < 4! = 24,

e INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an
arbitrary integer k > 4. To show that P(k + 1) holds:

2k+1 _ 2.2k
< 2 k! (by the inductive hypothesis)
< (k+1)k! (using 2<(k+1) for k = 4)
=(k+1)!
Therefore, 2" < n! holds, for every integer n = 4.

Note: that here the basis step is P(4), since P(0), P(1), P(2), and P(3) are all false.
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Proving Divisibility Results

Example: Use mathematical induction to prove that n3 —nis

divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3 — n is divisible by 3.
e BASIS STEP: P(1) is true since 13 — 1 = 0, which is divisible by 3.

e INDUCTIVE STEP: Assume P(k) holds, i.e., k3 — k is divisible by 3, for
an arbitrary positive integer k. To show that P(k + 1) follows:

(k+1) =(k+D =k +3k> +3k+1) = (k+1)
=k 43k +3k+1-k-1
=(k>-k)+3(k* +k)

By the inductive hypothesis, the first term (k3 — k) is divisible by 3
and the second term is divisible by 3 since it is an integer multiplied
by 3.

Therefore, n® —n is divisible by 3, for every integer positive integer n.
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Number of Subsets of a Finite Set

Example: Use mathematical induction to show that if
S is a finite set with n elements, where n is a
nonnegative integer, then S has 2" subsets.

Solution: Let P(n) be the proposition that a set with n
elements has 2" subsets.

* Basis Step: P(0) is true, because the empty set has only
itself as a subset and 2Y = 1.

* Inductive Step: Assume P(k) is true for an arbitrary
nonnegative integer k.

continued —



/

P
Number of Subsets of a Finite Set

Inductive Hypothesis: For an arbitrary nonnegative integer k,
every set with k elements has 2 subsets.

» Let T be a set with k + 1 elements. Then T =S U {a}, wherea € T
and S=T — {a}. Hence |T| = k+1.

» For each subset X of S, there are exactly two subsets of T, i.e., X and

X U {a}.
O

QI
&)

« By the inductive hypothesis S has 2k subsets. Since there are two

sub]sets lOfl T for each subset of S, the number of subsets of T is
2 2 VA 2 K+
; <4
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Validity of Mathematical Induction

Mathematical induction is valid (holds for all positive integers) because of
the well ordering property, which states that every nonempty subset of the
set of positive integers has a least element.

Here is a proof by contradiction:

Suppose that P(1) holds and P(k) = P(k + 1) is true for all positive integers k.

Assume there is at least one positive integer n for which P(n) is false. Then the
set S of positive integers for which P(n) is false is nonempty.

By the well-ordering property, S has a least element, say m.
We know that m cannot be 1 since P(1) holds.

Since m is positive and greater than 1, m — 1 must be a positive integer. Since m
—~1<m,itisnotin S, so P(m — 1) must be true.

But then, since the conditional P(k) — P(k + 1) for every positive integer k
holds, P(m) must also be true. This contradicts P(m) being false.

Hence, P(n) must be true for every positive integer n.



