Partial Orderings

Section 9.6

Partial Orderings

Definition 1: A relation *R* on a set *S* is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially* ordered set, or poset, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Partial Orderings (continued)

Example: Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.

- Reflexivity: $a \ge a$ for every integer a.
- *Antisymmetry*: If $a \ge b$ and $b \ge a$, then a = b.
- *Transitivity*: If $a \ge b$ and $b \ge c$, then $a \ge c$.

Partial Orderings (continued)

Example: Show that the inclusion relation (\subseteq) is a partial ordering on the power set of a set *S*.

- *Reflexivity*: $A \subseteq A$ whenever A is a subset of S.
- Antisymmetry: If A and B are positive integers with $A \subseteq B$ and $B \subseteq A$, then A = B.
- *Transitivity*: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Partial Orderings (continued)

Example: Show that the divisibility relation (|) is a partial ordering on the set of integers.

- Reflexivity: a | a for all integers a. (see Example 9 in Section 9.1)
- Antisymmetry: If a and b are positive integers with $a \mid b$ and $b \mid a$, then a = b. (see Example 12 in Section 9.1)
- Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is transitive.
- (**Z**⁺, |) is a poset.

Comparability

Definition 2: Let \leq denote any reflexive, antisymmetric, transitive relation, then the elements a and b of a poset (S, \leq) are *comparable* if either $a \leq b$ or $b \leq a$. When a and b are elements of S so that neither $a \leq b$ nor $b \leq a$, then a and b are called incomparable.

Definition 3: If (S, \leq) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \leq is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Definition 4: (S, \leq) is a well-ordered set if it is a poset such that \leq is a total ordering and every nonempty subset of S has a least element.