Introduction to Trees

Section 11.1
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Trees

Definition: A tree is a connected undirected graph with no simple circuits.

Example: Which of these
graphs are trees?

Solution: G, and G, are trees - both are connected and have no simple circuits. Because
e, b, a, d, e is a simple circuit, G, is not a tree. G, is not a tree because it is not
connected.

Definition: A forest is a graph that has no simple circuit,

but is not connected. Each of the connected
components in a forest is a tree.

This is one graph with three connected components.
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Trees (continued)

Theorem: An undirected graph is a tree if and only if there is a unique simple
path between any two of its vertices.

Proof: Assume that T is a tree. Then T is connected with no simple circuits.
Hence, if x and y are distinct vertices of T, there is a simple path between
them (by Theorem 1 of Section 10.4). This path must be unique - for if there
were a second path, there would be a simple circuit in T (by Exercise 59 of
quction 10.4). Hence, there is a unique simple path between any two vertices
OrI a tree.

Now assume that there is a unique simple path between any two vertices of a
graph T. Then T is connected because there is a path between any two of its
vertices. Furthermore, T can have no simple circuits since if there were a
simple circuit, there would be two paths between some two vertices.

<

Hence, a graph with a unique simple path between any two vertices is a tree.
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Trees as Models
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Trees are used as models in computer
science, chemistry, geolo
psychology, and many ot

Trees were introduced by the mathematician
Cayley in 1857 in his work counting the
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botany,
areas.

number of isomers of saturated

hydrocarbons. The two isomers of butane

are shown at the right.
The organization of a computer file system

into directories, subdirectories, and files is

naturally represented as a tree.
Trees are used to represent the structure of

organizations.

H
H—(|3—H
H—é—H
H—(|I—H
H—(|Z—H

!

Butane

H H
D S S
!
H—C—H
h

——
\

usr

/

bin rje

/INT TN

Di ( D

MIS

ed nroff

vi khr

spool

opr

printer

r Cay
(1821-1895)

[sobutane

l

uucp

file

bin

/

mail

€y

AN

who

I'he root is the root directory /

Internal vertices are directories

Leaves are files

tmp

junk



y

Rooted Trees

Definition: A rooted tree is a tree in which one vertex
has been designated as the root and every edge is
directed away from the root.

An unrooted tree is converted into different rooted
trees when different vertices are chosen as the root.



Rooted Tree Terminology

Nikolaus

Terminology for rooted trees is a (1623-1708)
mix from botany and / \
genealogy (such as this family tree

1 1 Jacob 1 Nikolaus Johann I
gf;gleellzlesggil;glsfamlly Of (1654-1705) (1662-1716) (1667-1748)

Nikolaus I Nikolaus II Daniel Johann II
(1687-1759)  (1695-1726) (1700—-1782)  (1710—1790)

/ N\

Johann III Jacob IT
(1746-1807)  (1759-1789)

If v is a vertex of a rooted tree other than the root, the parent of v is the unique vertex u such that
there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with
the same parent are called siblings.

The ancestors of a vertex are the vertices in the C})ath from the root to this vertex, excluding the

vertex itself and including the root. The descendants of a vertex v are those vertices that have v as
an ancestor.

A vertex of a rooted tree with no children is called a leaf. Vertices that have children are called
internal vertices.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and
its descendants and all edges incident to these descendants.
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Terminology for Rooted Trees

Example: In the rooted tree T (with root a):

Find the parent of c, the children of g, the siblings
of h, the ancestors of e, and the descendants of b.

Find all internal vertices and all leaves.
What is the subtree rooted at g?

Solution:

The parent of c is b. The children of g are h, i, and
j. The siblings of h are i and j. The ancestors of e
are ¢, b, and a. The descendants of b are c, d, and
e.

The internal vertices are q, b, c, g, h, and j. The
leaves are d, e, f, i, k, [, and m.

We display the subtree rooted at g.
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m-ary Rooted Trees

Definition: A rooted tree is called an m-ary tree if every internal vertex has no
more than m children. The tree is called a%ll m-ary tree if every internal
vertex has exactly m children. An m-ary tree with m = 2 is called a binary tree.

Example: Are the following rooted trees full m-ary trees for some positive
integer m?

Solution: T} is a full binary tree because each of its internal vertices has two
children. T, is a full 3-ary tree because each of its internal vertices has three
children. In T; each internal vertex has five children, so T5 is a full 5-ary tree.

T, is not a full m-ary tree for any m because some of its internal vertices have
two children and others have three children.



Ordered Rooted Trees

Definition: An ordered rooted tree is a rooted tree where the children of each internal vertex are
ordered.
e We draw ordered rooted trees so that the children of each internal vertex are shown in order
from left to right.

Definition: A binary tree is an ordered rooted tree where each internal vertex has at most two
children. If an internal vertex of a binary tree has two children, the first is called the left child and
the second the right child. The tree rooted at the left child of a vertex is called the left subtree of this
vertex, and the tree rooted at the right child of a vertex is called the right subtree of this vertex.

Example: Consider the binary tree T.
(i) What are the left and right children of d?

(i) What are the left and right subtrees of c?
Solution:

(1) The left child of d is fand the right child is g.

(ii) The left and right subtrees of ¢ are displayed in
(b) and (c).

m

(b) (©



Properties of Trees

Theorem 2: A tree with n vertices has n — 1 edges.

Proof (by mathematical induction):

BASIS STEP: When n = 1, a tree with one vertex has no
edges. Hence, the theorem holds when n = 1.

INDUCTIVE STEP: Assume that every tree with k vertices
has k — 1 edges (inductive hypothesis).

Suppose that a tree T has k + 1 vertices and that v is a leaf
of T. Let w be the parent of v. Removing the vertex v and
the edge connecting w to v produces a tree T' with k
vertices. By the inductive hypothesis, T' has k — 1 edges.
Because T has one more edge than T, we see that T has k
edges. This completes the inductive step. <
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Counting Vertices in Full m-Ary
Trees

Theorem 3: A full m-ary tree with i internal vertices
has n=mxi + 1 vertices.

Proof : Every vertex, except the root, is the child of an
internal vertex. Because each of the i internal vertices
has m children, there are mxi vertices in the tree
other than the root. Hence, the tree contains

n =mxi + 1 vertices. <



Counting Vertices in Full m-Ary
Trees (continued)

Theorem 4: A full m-ary tree with

(i)  nvertices has i = (n — 1)/minternal vertices
and [=[(m — 1)n+ 1]/ mleaves,

(1) 1 internal vertices has n = mi + 1 vertices and
[=(m — 1)i+ 1 leaves,

(i11) lleaveshas n= (ml — 1)/(m — 1) vertices and
i=(l —1)/ (m — 1) internal vertices.

Proof (of part i): Solving for i in n = mi + 1 (from
Theorem 3) givesi= (n — 1)/m. Since each vertex is either
a leaf or an internal vertex, n = [+ i. By solving for [ and
using the formula for i, we see that

[=n—i=n—(n— 1)/m=[(m —1)n+ 1]/m. <



~Level of vertices and height of

trees

When working with trees, we often want to have rooted trees where the subtrees at
each vertex contain paths of approximately the same length.

To make this idea precise we need some definitions:

e The level of a vertex v in a rooted tree is the length of the unique path from the root to
this vertex.

e The height of a rooted tree is the maximum of the levels of the vertices.

Example:
(1) Find the level of each vertex in
the tree to the right.

(i) What is the height of the tree?

Solution:
(i) The root a is at level 0. Vertices b, j, and k are at level 1.
Vertices c, e, f, and [ are at level 2. Vertices d, g, i, m, and n are at level 3.
Vertex h is at level 4.

(ii)) The height is 4, since 4 is the largest level of any vertex.
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Balanced m-Ary Trees

Definition: A rooted m-ary tree of height h is
balanced if all leaves are at levels h or h — 1.

Example: Which of the rooted trees shown below is

balanced? m ﬁ

Solution: T, and T; are balanced, but T;, is not
because it has leaves at levels 2, 3, and 4.
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~The Bound for the Number of
Leaves in an m-Ary Tree

Theorem 5: There are at most m" leaves in an m-ary tree of height h.
Proof (by mathematical induction on height):

BASIS STEP: Consider an m-ary trees of height 1. The tree consists of a root and no
more than m children, all leaves. Hence, there are no more than m! = m leaves in an m-
ary tree of height 1.

INDUCTIVE STEP: Assume the result is true for all m-ary trees of height < h (inductive
hypo.). Let T be an m-ary tree of height h. The leaves of T are the leaves of the subtrees
of T'we get when we delete the edges from the root to each of the vertices of level 1.

Each of these subtrees has height < h— 1. By the inductive hypothesis, each of these
subtrees has at most m"~1 leaves. Since there are at most m such subtees, there are at
most m- mh—1 = mh leaves in the tree. <
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Tree Traversal

Section 11.3
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Tree Traversal

Procedures for systematically visiting every vertex of
an ordered tree are called traversals.

The three most commonly used traversals are
preorder traversal, inorder traversal, and postorder
traversal.
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Preorder Traversal

Definition: Let T be an ordered rooted tree with root
r. If T consists only of r, then r is the preorder
traversal ot T. Otherwise, suppose that T, T, ..., T
are the subtrees of r from left to right in T. The
preorder traversal begins by visiting r, and continues
by traversing T, in preorder, then T, in preorder, and
so on, until T, is traversed in preorder.




Preorder Traversal (continued)

procedure preorder (T: ordered rooted

tree)

r:=rootof T

list r

for each child c of r from left to right
T(c) := subtree with c as root
preorder(T(c))
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Inorder Traversal

Definition: Let T be an ordered rooted tree with root
r. If T consists only of r, then r is the inorder traversal
of T. Otherwise, suppose that T, T,, ..., T, are the
subtrees of r from left to right in T. The inorder
traversal begins by traversing T, in inorder, then
visiting r, and continues by traversing T, in inorder,
and so on, until T, is traversed in inorder.
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Inorder Traversal (continued)

procedure inorder (T: ordered rooted tree)
r:=rootof T
if r is a leaf then list r
else
[ := first child of r from left to right
T(]) := subtree with [ as its root
inorder(T(1))
list(r)
for each child c of r from left to right
T(c) := subtree with c as root
inorder(T(c))

Inorder traversal: Visit leftmost
subtree, visit root, visit other
subtrees left to right
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Postorder Traversal

Definition: Let T be an ordered rooted tree with root
r. If T consists only of r, then r is the postorder
traversal of T. Otherwise, suppose that T, T,, ..., T,
are the subtrees of r from left to right in T. The
postorder traversal begins by traversing T, in
postorder, then T, in postorder, and so on, after T, is
traversed in postorder, r is visited.




Postorder Traversal (continued)
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procedure postordered (T: ordered rooted tree)
r:=root of T
for each child c of r from left to right
T(c) := subtree with c as root
postorder(7T(c))
list r
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Expression Trees

Complex expressions can be represented using

ordered rooted trees.

Consider the expression ((x +y) T2 ) + ((x — 4)/3).

A binary tree for the expression can be built from the

bottom up, as is illustrated here.
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Infix Notation

An inorder traversal of the tree representing an
expression produces the original expression when
parentheses are included except for unary operations,
which now immediately follow their operands.

We illustrate why parentheses are needed with an

example that displays three trees all yield the same
infix representation.

SN N
7N\ /\ /\

/N /N /\ /\



Jan tukasiewicz
(1878-1956)
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Prefix Notation

When we traverse the rooted tree :
representation of an expression in preorder, evaluate a particular
we obtain the prefix form of the expression. prefix expression:
Expressions in prefix form are said to be in
Pog'sh notation, named after the Polish
logician Jan Lukasiewicz.

Operators precede their operands in the prefix

Example: We show
the steps used to

+ - % 2 3 5 / 1 2 3 4

+ - % 2 3 5 [/ 8 4

form of an expression. Parentheses are not C s e
needed as the representation is unambiguous. ;
The prefix form of ((x +y) T2 ) + ((x — 4)/3) - 6 0.8

st s xy 2y w43

Prefix expressions are evaluated by working
from right to left. When we encounter an
operator, we perform the corresponding
operation with the two operations to the right.
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Example: We show

Postfix Notation the seps used to

evaluate a particular

We obtain the postfix form of an expression postfix expression.
by traversing its binary trees in postorder.
Expressions written in postfix form are said e

to be in reverse Polish notation.

Parentheses are not needed as the postfix
form is unambiguous. e

xy+27Tx4—3/+isthe postfix L
form of ((x +y) T2) + ((x — 4)/3).
A binary operator follows its two operands.  ,.,.....7""

So, to evaluate an expression one works from
left to right, carrying out an operation
represented by an operator on its preceding
operands.



