P \“S/

Spanning Trees

Section 11.4

P —

Spanning Trees

Definition: Let G be a simple graph. A spanning tree of G is a subgraph of G
that is a tree containing every vertex of G.

Example: Find the spanning tree of this
graph:

a b ¢ d
p—0

e g
f
Solution: The graph is connected, but is not a tree because it contains simple
circuits. Remove the edﬁre {a, e}. Now one simple circuit is gone, but the
remaining subgraph still has a simple circuit. Remove the edge {e, f} and then
the edge ?c, g} to produce a simple graph with no simple circuits. It is a
spanning tree, because it contains every vertex of the original graph.

Edge removed: {«. «

(a) (b) (c)

—

Spanning Trees (continued)

Theorem: A simple graph is connected if and only if it has a
spanning tree.

Proof: Suppose that a simple graph G has a spanning tree T. T
contains every vertex of G ancfg there is a path in T between any
two of its vertices. Because T is a subgraph of G, there is a path
in G between any two of its vertices. Hence, G is Connectegl).

Now suppose that G is connected. If G is not a tree, it contains a
simple circuit. Remove an edge from one of the simple circuits.
The resulting subgraph is stil% connected because any vertices
connected via a path containing the removed edge are still
connected via a path with the remaining part of the simple
circuit. Continue in this fashion until there are no more simple
circuits. A tree is produced because the graph remains
connected as edges are removed. The resulting tree is a
spanning tree because it contains every vertex of G.

—

Depth-First Search

To use depth-first search to build a spanning tree for a
connected simple graph first arbitrarily choose a vertex of the
graph as the root.

e Form a path starting at this vertex by successively adding vertices
and edges, where each new edge is incident with the last vertex in
the path and a vertex not already in the path. Continue adding
vertices and edges to this path as long as possible.

o [f the path goes through all vertices of the graph, the tree
consisting of this path is a spanning tree.

e Otherwise, move back to the next to the last vertex in the path,
and if possible, form a new path starting at this vertex and passing
through vertices not already visited. If this cannot be done, move
back another vertex in the path.

e Repeat this procedure until all vertices are included in the
spanning tree.

Depth-First Search (continued)

Example: Use depth-first search i
to find a spanning tree of this graph.

b g

Solution: We start arbitrarily with vertex f. We build a path by successively
adding an edge that connects the last vertex added to the path and a vertex
not already in the path, as long as this is possible. The result is a path that
connects f, g, h, k, and j. Next, we return to k, but find no new vertices to add.
So, we return to h and add the path with one edge that connects h and i. We
next return to c{’ and add the path connecting f, d, e, ¢, and a. Finally, we
return to ¢ and add the path connecting c and b. We now stop because all
vertices have been added.

if f ¥
°

g g

h h
k k
i
J J

(a) (b) (c)

J

(d) (e)

———

e
Depth-First Search (continued)

The edges selected by depth-first search of a graph are
called tree edges. All other edges of the graph must
connect a vertex to an ancestor or descendant of the
vertex in the graph. These are called back edges.

In this figure, the tree edges are shown with heavy
blue lines. The two thin black edges are back edges.

i

NN
an

h k

/, AR e G0 — "

Depth-First Search Algorithm

We now use pseudocode to specifty depth-first search.
In this recursive algorithm, after adding an edge
connecting a vertex v to the vertex w, we finish
exploring w before we return to v to continue
exploring from v.

procedure DFS(G: connected graph with vertices v, v,, ..., v,,)
T := tree consisting only of the vertex v,

visit(v,)

procedure visit(v: vertex of G)

for each vertex wadjacent to v and notyetin T
add vertex wand edge {v,w}to T
visit(w)

—

Breadth-First Search

We can construct a spanning tree using breadth-first
search. We first arbitrarily choose a root from the
vertices of the graph.

e Then we add all of the edges incident to this vertex and
the other endpoint of each of these edges. We say that
these are the vertices at level 1.

e For each vertex added at the previous level, we add
each edge incident to this vertex, as long as it does not
produce a simple circuit. The new vertices we find are
the vertices at the next level.

e We continue in this manner until all the vertices have
been added and we have a spanning tree.

Breadth-First Search (continued)

Example: Use breadth-first search to find a spanning tree a B & 3

for this graph. {
g

d

)
m k

Solution: We arbitrarily choose vertex e as the root. We then add the edges from e to b, d, f, and i.
These four vertices make up level 1 in the tree. Next, we add the edges from b to a and c, the edges
from d to h, the edges from fto j and g, and the edge from i to k. The endpoints of these edges not at
level 1 are at level 2. Next, add edges from these vertices to adjacent vertices not already in the
graph. So, we add edges from g to [and from k to m. We see that level 3 is made up of the vertices [
and m. This is the last level because there are no new vertices to find.

o~
[]
[

o~
L
[]
<
a
S
\>
ol
(SW
~
2

Breadth-First Search Algorithm

We now use pseudocode to describe breadth-first
search.

procedure BFS(G: connected graph with vertices v, v,, ..., v,,)
T := tree consisting only of the vertex v,
L := empty list visit(v,)
put v, in the list L of unprocessed vertices
while L is not empty
remove the first vertex, v, from L
for each neighbor w of v
if wis not in L and not in T then
add w to the end of the list L
add w and edge {v,w}to T

~ Depth-First Search in Directed™
Graphs

Both depth-first search and breadth-first search can be easily modified to run on a directed graph.
But the result is not necessarily a spanning tree, but rather a spanning forest.

Example: For the graph in (a), if we begin at
vertex a, depth-first search adds the path

connecting a, b, ¢, and g. At g, we are a b c d
blocked, so we return to b. Next, we add the

path connecting b, fand e. Next, we return b h
to a and find that we cannot add a new path. y_ v 18 1, //\\r\ ,
So, we begin another tree with d as its root. ‘ ‘ ‘ g@ o

We find that this new tree consists of the k

path connecting the vertices d, h, [, k, and j.
Finally, we add a new tree, which only " J ; ’
contains i, its root. (@) (b)

~.

To index websites, search engines such as Google systematically eg;lore the web starting at known
sites. The programs that do this exploration are known as Web spiders. They may use both breath-
first search or depth-first search to explore the Web graph.

