
Chapter 1:
Overview of
Compilation
A Presentation by Gregory Breard

Introduction

● Today we will be discussing compilers. This
will be a rather high-level introduction to
compiler design, and most of the material
covered should be familiar to you.

● Compiler - a computer program that
translates other computer programs to
prepare them for execution

Conceptual Roadmap

● Compilers translate software written in one
language into another language.

● To perform this translation, the compiler must:
○ Understand the form of the language (or syntax)
○ Understand the meaning of the language (or

semantics)
○ And have a scheme for mapping content from the

source language to the target language
● Compilers typically have a front end for

dealing with the source language, and a back
end for dealing with the target language.

Overview

● In general, compilers translate programming
languages into machine instructions for a
specific processor (or target machine)

● Viewed as a black box:

● Typical source languages are: C++, Java, etc.
● The target language is usually the instruction

set of the target machine

CompilerSource Program Target Program

Overview (continued)

● Instruction set - the set of operations
supported by a processor; the overall design
of an instruction set is often called an
instruction set architecture (or ISA).

● Some compilers target programming
languages instead of an instruction set,
these are referred to as source-to-source
translators

● There are many other systems that qualify
as compilers (i.e. typesetting programs)

Overview (continued)

● A program that reads source code and
produces results (instead of translating to a
target language) is called an interpreter.

● Some languages' translation schemes
include both compilation and interpretation,
one example being Java.

InterpreterSource Program Results

Overview (continued)

● Java is compiled into bytecode, which is
then executed by a bytecode interpreter, the
Java Virtual Machine (JVM)

● Virtual machine - A virtual machine is a
simulator for some processor. It is an
interpreter for that machine's instruction set.

● Compilers and interpreters are similar and
perform many of the same tasks. However,
the outputs of these programs are
significantly different.

The Fundamental Principles of Compilation

● There are two fundamental principles of
compilation that are essential to compiler
design:

1. The compiler must preserve the meaning
of the program being compiled.

2. The compiler must improve the input
program in some discernible way.

Compiler Structure

● A compiler must both understand the source
program and map its functionality to the
target machine

● These two distinct tasks are separated into
the front end and back end of the compiler

Two-Phase Compiler

Front EndSource Program IR Back End Target Program

Compiler Structure (continued)

● The front end focuses on understanding the
source language program

● The back end focuses on mapping programs
to the target language

● Between these tasks, the compiler uses an
intermediate representation (IR) to store
information about the program

● IR - A compiler uses some set of data
structures to represent the code that it
processes. That form is called an
intermediate representation.

10

Compiler Structure (continued)

● The IR is a definitive representation of the
code it is translating.

● Compilers may even use several different
IRs depending on the task it is performing.

● The front end ensures the source code is
well formed, and maps it to the IR.

● The back end therefore only processes the
IR, and can assume the IR contains no
syntactic or semantic errors.

Compiler Structure (continued)

● This two-phase approach to compiling also
simplifies the process of retargeting.

● Retargeting - the task of changing the
compiler to generate code for a new
processor is often called retargeting the
compiler.

● The compiler can be made to read a
different source program by changing out the
front end. Similarly, the compiler can be
made to translate to a different target
program by changing out the back end.

Compiler Structure (continued)

● A compiler can also have a third phase
added between the front end and back end,
an optimizer.

● Optimizer - analyzes and transforms the IR
to improve it.
Three-Phase Compiler

Front EndSource
Program Back EndOptimizerIR Target

ProgramIR

Compiler Structure (continued)

● The optimizer is an IR-to-IR transformer
● It can make one or more passes over the IR,

analyzing and rewriting it.
● The optimizer may have a variety of

objectives, i.e. a faster target program or a
smaller target program

● It should be noted that although the term
optimization is used, the problems of
optimization are so complex and interrelated
that they cannot, in practice, be solved
optimally.

Overview of Translation

● In translating from a programming language
to machine executable code, a compiler runs
through many steps.

● Following, we will discuss the steps taken
by:
○ The Front End
○ The Optimizer
○ The Back End

The Front End

● Before translating the code, the compiler
must understand the syntax and semantics
of the source program.

● If the syntax and semantics are valid, the
front end produces an intermediate
representation for the source program

● If the syntax or semantics are invalid, a
diagnostic error message is returned to the
user and compilation is halted.

The Front End:
Checking Syntax

● To check the syntax of a program, the
compiler must compare the program's
structure to a definition of the language.

● The source language is defined by a finite
set of rules, called a grammar.

● Programming language grammars refer to
words by their parts of speech, or syntactic
categories.

The Front End:
Checking Syntax (continued)

● For example, an English sentence may have
the definition:
Sentence → Subject verb Object endmark

● Here, verb and endmark are parts of
speech and Subject and Object are syntactic
variables.

● Sentence represents any string with the form
described by the rule.

● The → symbol is read "derives" and means
the instance on the right can be abstracted
to the syntactic variable on the left.

The Front End:
Checking Syntax (continued)

● Two separate passes in the front end (called
the scanner and the parser) determine if the
input program is valid.

● Scanner - the compiler converts a string of
characters into a stream of classified words.

● i.e. "Compilers are engineered objects."
would be converted to the (part of speech,
spelling) pairs:
(noun, "Compilers"), (verb, "are"),
(adjective, engineered"),(noun,
"objects"), (endmark, ".")

The Front End:
Checking Syntax (continued)

● Example grammar:
Sentence → Subject verb Object endmark
Subject → noun
Subject→ Modifier noun
Object → noun
Object → Modifier noun
Modifier → adjective

20

The Front End:
Checking Syntax (continued)

● Parser - performs a series of automatic
derivations in order to determine if the input
stream is a sentence in the language
definition.

● Derivation for our example:
Sentence
Subject verb Object endmark
noun verb Object endmark
noun verb Modifier noun endmark
noun verb adjective noun endmark

The Front End:
Checking Syntax (continued)

● However, a grammatically correct sentence
may be meaningless i.e. "Rocks are green
vegetables."

● Semantic analysis is used to determine if a
sentence's "meaning" is valid

● One example of semantic analysis is
checking for type consistency i.e. to make
sure an int is not assigned a string value

● Type Checking - the compiler pass that
checks for type-consistent uses of names in
the input progam.

The Front End:
Intermediate Representation

● The front end is also responsible for
generating the IR

● Compilers use a variety of different types of
IRs, depending on the specific needs of the
compiler.

● However, for every source-language
construct the compiler needs a strategy for
how it will implement the construct in the IR.

The Optimizer

● The optimizer analyzes the IR to discover
facts about how the code will behave at
runtime.

● It then uses this information to rewrite the
code so that it produces the same answer in
a more efficient way.

● Efficiency can have many meanings in this
context, i.e. reduced running time, reduced
compiled code size, reduced processor
energy consumption, etc.

The Optimizer:
Analysis

● The first step of optimization is to analyze
the code to determine where the compiler
can safely and profitably apply
transformations.

● Compilers use several kinds of analysis.
● Data-flow analysis - a form of compile time

reasoning about the runtime flow of values.
● Dependence analysis - uses number-

theoretic tests to reason about the values
that can be assumed by subscript
expressions.

The Optimizer:
Transformation

● After analyzing the code, the compiler must
use the results to rewrite the code in a more
efficient form.

● A multitude of transformations have been
invented do just that.

● One example is to move loop-invariant
computations outside of loops to improve
running time of the program.

● Transformations vary in their effect, the
scope over which they operate, and the
analysis required to support them.

The Back End

● The back end reads the IR and generates
code for the target machine

● It selects target machine operations to
perform the operations represented in the IR
and chooses an order in which these
operations will execute efficiently.

● It also decides which values will reside in
registers and which will reside in memory,
and generates the code that will enforce
these decisions.

The Back End:
Instruction Selection

● The first step in code generation is
instruction selection, in which each IR
operation is rewritten as one or more target
machine operations.

● Example: a ← a * 2 * b * c
IR for the expression:
t0 ← a * 2
t1 ← t0 * b
t2 ← t1 * c
a ← t2

The Back End:
Instruction Selection (continued)

● Rewritten for the ILOC virtual machine:
loadAI rarp, @a ⇒ ra // load 'a'

loadI 2 ⇒ r2 // constant 2 into r2
loadAI rarp, @b ⇒ rb // load 'b'

loadAI rarp, @c ⇒ rc // load 'c'

mult ra, r2 ⇒ ra // ra = a * 2

mult ra, rb ⇒ ra // ra = (a * 2) * b

mult ra, rc ⇒ ra // ra = (a * 2 * b) * c
storeAI ra ⇒ rarp,@a // write ra back to

 // 'a'

The Back End:
Instruction Selection (continued)

● In the code in the previous slide, a
straightforward approach has been used to
rewrite the IR.

● The values are loaded into registers, the the
multiplication operations are performed, and the
result is stored in the memory location for a.

● The compiler assumes there is an unlimited
supply of registers, which it names symbolically.

● Implicitly, the instruction selector relies on the
register allocator to map these virtual registers
to the actual registers of the target machine.

30

The Back End:
Register Allocation

● The instruction selector deliberately ignores
the fact that the target machine has a limited
set of registers.

● In practice, the earlier stages of compilation
may create more demand for registers than
the hardware can support.

● It is the job of the register allocator to map
the virtual registers to actual registers on the
target machine.

● On the following slide is our previous
example, rewritten to minimize register use.

The Back End:
Register Allocation (continued)

● Rewritten for the ILOC virtual machine:
loadAI rarp, @a ⇒ r1 // load 'a'

add r1, r1 ⇒ r1 // r1 = a * 2
loadAI rarp, @b ⇒ r2 // load 'b'

mult r1, r2 ⇒ r1 // r1 = (a * 2) * b
loadAI rarp, @c ⇒ r2 // load 'c'

mult r1, r2 ⇒ r1 // r1 = (a * 2 * b) * c
storeAI r1 ⇒ rarp,@a // write r1 back to

 // 'a'

● This sequence uses 3 registers instead of 6.

The Back End:
Instruction Scheduling

● To increase performance the operations may
be reordered to reflect the performance
constraints of the target machine.

● i.e. memory access operations may take
hundreds of cycles, while arithmetic
operations may take only several

● For example, assume loadAI and storeAI
take 3 cycles, and mult takes 2 cycles to
complete.

● Following is a demonstration of how
reordering operations improves performance.

The Back End:
Instruction Scheduling

Start End

1 3 loadAI rarp, @a ⇒ r1 // load 'a'

4 4 add r1, r1 ⇒ r1 // r1 = a * 2

5 7 loadAI rarp, @b ⇒ r2 // load 'b'

8 9 mult r1, r2 ⇒ r1 // r1 = (a * 2) * b

10 12 loadAI rarp, @c ⇒ r2 // load 'c'

13 14 mult r1, r2 ⇒ r1 // r1 = (a * 2 * b) * c

15 17 storeAI r1 ⇒ rarp,@a // write r1 back to 'a'

● These 8 operations take 17 cycles to complete

The Back End:
Instruction Scheduling

Start End

1 3 loadAI rarp, @a ⇒ r1 // load 'a'

2 4 loadAI rarp, @b ⇒ r2 // load 'b'

3 5 loadAI rarp, @c ⇒ r3 // load 'c'

4 4 add r1, r1 ⇒ r1 // r1 = a * 2

5 6 mult r1, r2 ⇒ r1 // r1 = (a * 2) * b

7 8 mult r1, r2 ⇒ r1 // r1 = (a * 2 * b) * c

9 11 storeAI r1 ⇒ rarp,@a // write r1 back to 'a'

● These 8 operations take 11 cycles to complete

The Back End:
Interactions Among Code-Generation Components

● Code generation is complicated further by the
interaction of complex problems.

● For example, instruction scheduling moves
load operations away from the arithmetic
operations that depend on them.

● This increases the amount of time that these
registers hold values, and therefore may
increase the number of registers needed.

● Also, a false dependency can be created
between operations when specific registers
are used.

Summary

● Compiler design is a complicated task.
● Compilers use many methods to address a

variety of complex problems.
● Many of these problems are too hard to

solve optimally, so compilers use
approximations and heuristics.

● This often results in interactions that may
produce surprising results - which may be
good or bad.

Sources

All material included in these slides is from:
Engineering A Compiler, 2nd Edition
by Keith Cooper and Linda Torczan, pgs 1 - 21

FIN

