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The Front End 

Parser 
•  Checks the stream of words and their parts of speech 

(produced by the scanner) for grammatical correctness 
•  Determines if the input is syntactically well formed 
•  Guides checking at deeper levels than syntax 
•  Builds an IR representation of the code 

Think of this chapter as the mathematics of diagramming sentences 

Source 
code Scanner 

IR 
Parser 

Errors  

tokens 
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The Study of Parsing 
The process of discovering a derivation  for some sentence 
•  Need a mathematical model of syntax — a grammar G 
•  Need an algorithm for testing membership in L(G)  
•  Need to keep in mind that our goal is building parsers, not 

studying the mathematics of arbitrary languages 

Roadmap for our study of parsing 
1  Context-free grammars and derivations 
2  Top-down parsing 

—  Generated LL(1) parsers & hand-coded recursive descent 
parsers 

3  Bottom-up parsing 
—  Generated LR(1) parsers 
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Specifying Syntax with a Grammar 
Context-free syntax is specified with a context-free grammar 

  SheepNoise → SheepNoise baa  
                                |  baa 

This CFG defines the set of noises sheep normally make  

It is written in a variant of Backus–Naur form 

Formally, a grammar is a four tuple, G = (S,N,T,P) 
•  S  is the start symbol                         (set of strings in L(G)) 
•  N  is a set of nonterminal symbols         (syntactic variables) 
•  T  is a set of terminal symbols                                   (words) 
•  P  is a set of productions or rewrite rules    (P : N → (N ∪ T)+ ) 
                                              Example due to Dr. Scott K. Warren 

From Lecture 1 
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Why Not Use Regular Languages & DFAs? 

Removed for time 



Context-free Grammars 
What makes a grammar “context free”? 

The SheepNoise grammar has a specific form: 

  SheepNoise → SheepNoise  baa 
                                |   baa 

Productions have a single nonterminal on the left hand side, 
which makes it impossible to encode left or right context. 

⇒ The grammar is context free. 

A context-sensitive grammar can have ≥ 1 nonterminal on lhs. 

Notice that L(SheepNoise) is actually a regular language:  baa 
+ 
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Classic definition: any language that can be recognized 
by a push-down automaton is a context-free language. 
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A More Useful Grammar Than Sheep Noise 
To explore the uses of CFGs,we need a more complex grammar 

•  Such a sequence of rewrites is called a derivation 
•  Process of discovering a derivation is called parsing 

We denote this derivation:  Expr ⇒*  id – num * id 

Rule Sentential Form 
— Expr 
0 Expr Op Expr 
2 <id,x> Op Expr 
4 <id,x> - Expr 
0 <id,x> - Expr Op Expr 
1 <id,x> - <num,2> Op Expr 
5 <id,x> - <num,2> * Expr 
2 <id,x> - <num,2> * <id,y> 

0 Expr → Expr Op Expr 
1 | number 
2 | id 
3 Op → + 
4 | - 
5 | * 
6 | / 
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Derivations 
The point of parsing is to construct a derivation 

•  At each step, we choose a nonterminal to replace 
•  Different choices can lead to different derivations 

Two derivations are of interest 
•  Leftmost derivation  — replace leftmost NT at each step 
•  Rightmost derivation — replace rightmost NT at each step 

These are the two systematic derivations 
(We don’t care about randomly-ordered derivations!) 

The example on the preceding slide was a leftmost derivation 
•  Of course, there is also a rightmost derivation 
•  Interestingly, it turns out to be different 
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Derivations and Parse Trees 
Leftmost derivation 

G 

x 

E 

E Op 

– 

2 

E 

E 

E 

y 

Op 

* 
This evaluates as   x  – ( 2 * y ) 

Rule Sentential Form 
— Expr 
0 Expr Op Expr 
2 <id,x> Op Expr 
4 <id,x> - Expr 
0 <id,x> - Expr Op Expr 
1 <id,x> - <num,2> Op Expr 
5 <id,x> - <num,2> * Expr 
2 <id,x> - <num,2> * <id,y> 
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Derivations and Parse Trees 
Rightmost derivation 

x 2 

G 

E 

Op E E 

E Op E y 

– 

* 

This evaluates as   ( x – 2 ) * y 

This ambiguity is NOT good 

Rule Sentential Form 
— Expr 
0 Expr Op Expr 
2 Expr Op <id,y> 
5 Expr * <id,y> 
0 Expr Op Expr * <id,y> 
1 Expr Op <num,2> * <id,y> 
4 Expr - <num,2> * <id,y> 
2 <id,x> - <num,2> * <id,y> 
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Derivations and Precedence 
 
These two derivations point out a problem with the grammar: 

It has no notion of  precedence, or implied order of evaluation 

To add precedence 
•  Create a nonterminal for each level of precedence 
•  Isolate the corresponding part of the grammar 
•  Force the parser to recognize high precedence 

subexpressions first 

For algebraic expressions  
•  Parentheses first          (level 1 ) 
•  Multiplication and division, next                                   (level 2) 
•  Subtraction and addition, last                                      (level 3)  



Adding the standard algebraic precedence produces: 
0 Goal → Expr 
1 Expr → Expr + Term 
2 | Expr - Term 
3 | Term 
4 Term → Term * Factor 
5 | Term / Factor 
6 | Factor 
7 Factor → ( Expr ) 
8 | number 
9 | id 
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Derivations and Precedence 

This grammar is slightly larger 
• Takes more rewriting to reach 
some of the terminal symbols 
• Encodes expected precedence 
• Produces same parse tree under 
leftmost & rightmost derivations 
• Correctness trumps the speed 
of the parser 

Let’s see how it parses  x - 2 * y 

level 
2 

level 
3 

Cannot handle precedence 
in an RE for expressions 

Introduced parentheses, too 
(beyond power of an RE) 

level 
1 

One form of the “classic expression grammar” 
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Derivations and Precedence 

The rightmost derivation 

It derives x – ( 2 * y ), along with an appropriate parse tree. 
Both the leftmost and rightmost derivations give the same expression, because 
the grammar directly and explicitly encodes the desired precedence. 

G 

E 

– E 

T 

F 

<id,x> 

T 

T 

F 

F * 

<num,2> 

<id,y> 

Its parse tree 

Rule Sentential Form 
— Goal 
0 Expr 
2 Expr - Term 
4 Expr - Term * Factor 
9 Expr - Term * <id,y> 
6 Expr - Factor * <id,y> 
8 Expr - <num,2> * <id,y> 
3 Term - <num,2> * <id,y> 
6 Factor - <num,2> * <id,y> 
9 <id,x> - <num,2> * <id,y> 
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Ambiguity 
This sentential form has two derivations 

if Expr1 then if Expr2 then Stmt1  else Stmt2 

then 

else 

if 

then 

if 

E1 

E2 

S2 

S1 

production 2, then 
production 1 

then 

if 

then 

if 

E1 

E2 

S1 

else 

S2 

production 1, then 
production 2 

Removed for time 
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Parsing Techniques 
Top-down parsers     (LL(1), recursive descent) 
•  Start at the root of the parse tree and grow toward leaves 
•  Pick a production & try to match the input 
•  Bad “pick” ⇒ may need to backtrack 
•  Some grammars are backtrack-free           (predictive parsing) 

Bottom-up parsers     (LR(1), operator precedence) 
•  Start at the leaves and grow toward root 
•  As input is consumed, encode possibilities in an internal state 
•  Start in a state valid for legal first tokens 
•  Bottom-up parsers handle a large class of grammars 
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A top-down parser starts with the root of the parse tree 
The root node is labeled with the goal symbol of the grammar 

Top-down parsing algorithm: 
Construct the root node of the parse tree  
Repeat until lower fringe of the parse tree matches the input string 
1  At a node labeled A, select a production with A on its lhs and, for 

each symbol on its rhs, construct the appropriate child 
2  When a terminal symbol is added to the fringe and it doesn’t 

match the fringe, backtrack 
3  Find the next node to be expanded                              (label ∈ NT) 

The key is picking the right production in step 1 
—  That choice should be guided by the input string 

Top-down Parsing 
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Remember the expression grammar? 

And the input x – 2 * y  

We will call this version “the classic expression grammar” 

0 Goal → Expr 
1 Expr → Expr + Term 
2 | Expr - Term 
3 | Term 
4 Term → Term * Factor 
5 | Term / Factor 
6 | Factor 
7 Factor → ( Expr ) 
8 | number 
9 | id 
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Where are we? 
•  “2” matches “2” 
•  We have more input, but no NTs left to expand 
•  The expansion terminated too soon 
⇒  Need to backtrack 
 

Example 
Trying to match the “2” in  x – 2 * y : 

Goal 

Expr 

Term - Expr 

Term 

Fact. 

<id,x> 

Fact. 

<num,2> 

Rule Sentential Form Input 
→ <id,x> - Term x - ↑2 * y 
6 <id,x> - Factor x - ↑2 * y 
8 <id,x> - <num,2> x - ↑2 * y 
→ <id,x> - <num,2> x - 2 ↑* y 
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Example 
Trying again with “2” in x – 2 * y : 

Goal 

Expr 

Term – Expr 

Term 

Fact. 

<id,x> 

Fact. 

<id,y> 

Term 

Fact. 

<num,2> 

* 

This time, we matched & consumed all the input 
⇒ Success! 
 

Rule Sentential Form Input 
→ <id,x> - Term x - ↑2 * y 
4 <id,x> - Term * Factor x - ↑2 * y 
6 <id,x> - Factor * Factor x - ↑2 * y 
8 <id,x> - <num,2> * Factor x - ↑2 * y 
→ <id,x> - <num,2> * Factor x - 2 ↑* y 
→ <id,x> - <num,2> * Factor x - 2 * ↑y 
9 <id,x> - <num,2> * <id,y> x - 2 * ↑y 
→ <id,x> - <num,2> * <id,y> x - 2 * y↑ 

The Point: 
The parser must make the right choice when it expands a NT.  
Wrong choices lead to wasted effort. 
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Left Recursion 
 

Top-down parsers cannot handle left-recursive grammars 

Formally, 
A grammar is left recursive if ∃ A ∈ NT such that   
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 

Our classic expression grammar is left recursive 
•  This can lead to non-termination in a top-down parser 
•  In a top-down parser, any recursion must be right recursion 
•  We would like to convert the left recursion to right recursion 

Non-termination is always a bad property in a compiler 
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Eliminating Left Recursion 
To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
Fee → Fee  α     
         |   β 

where neither α nor β start with Fee 

We can rewrite this fragment as  
Fee → β Fie 
Fie  → α Fie 

         |  ε 
where Fie is a new non-terminal 

The new grammar defines 
the same language as the 
old grammar, using only 
right recursion. 

Added a reference 
to the empty string 
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Eliminating Left Recursion 
Substituting them back into the grammar yields 

• This grammar is correct,  if 
somewhat non-intuitive. 

• It is left associative, as was 
the original 
⇒ The naïve transformation 

yields a right recursive 
grammar, which changes the 
implicit associativity 

• A top-down parser will 
terminate using it. 

• A top-down parser may need 
to backtrack with it. 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Term Expr’ 
3 | - Term Expr’ 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Factor Term’ 
7 | / Factor Term’ 
8 | ε 
9 Factor → ( Expr ) 
10 | number 
11 | id 
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Picking the “Right” Production 
 

If it picks the wrong production, a top-down parser may backtrack  
Alternative is to look ahead in input & use context to pick correctly 

How much lookahead is needed? 
•  In general, an arbitrarily large amount 
•  Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm 

Fortunately, 
•  Large subclasses of CFGs can be parsed with limited lookahead 
•  Most programming language constructs fall in those subclasses 

Among the interesting subclasses are LL(1)  and LR(1)  grammars 

We will focus, for now, on LL(1) grammars & predictive parsing 



Comp 412, Fall 2010 24 

Predictive Parsing 
Basic idea 

Given A → α | β, the parser should be able to choose between α & β 

FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  
That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

We will defer the problem of how to compute FIRST sets for 
the moment. 
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Predictive Parsing 

What about ε-productions? 
⇒  They complicate the definition of LL(1) 

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure 
that FIRST(β) is disjoint from FOLLOW(A), too, where 

FOLLOW(A) = the set of terminal symbols that can immediately 
follow A in a sentential form 

Define FIRST+(A→α) as 
•  FIRST(α) ∪ FOLLOW(A),  if ε ∈ FIRST(α) 
•  FIRST(α), otherwise 

Then, a grammar is LL(1) iff A → α and A → β implies    
 FIRST+(A→α) ∩ FIRST+(A→β) = ∅ 
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Predictive Parsing 
Given a grammar that has the LL(1) property 
•  Can write a simple routine to recognize each lhs  
•  Code is both simple & fast 

Consider A → β1 | β2 | β3, with  
FIRST+(A→βi) ∩ FIRST+ (A→βj) = ∅ if i ≠ j 

/* find an A */ 
if (current_word ∈ FIRST(A→β1)) 
    find a β1 and return true 
else if (current_word ∈ FIRST(A→β2)) 
    find a β2 and return true 
else if (current_word ∈ FIRST(A→β3)) 
    find a β3 and return true 
else  
    report an error and return false 

Of course, there is more detail to 
“find a βi”   (p. 103 in EAC, 1st Ed.) 

Grammars with the LL(1) 
property are called predictive 
grammars because the parser 
can “predict” the correct 
expansion at each point in the 
parse. 
Parsers that capitalize on the 
LL(1) property are called 
predictive parsers. 
One kind of predictive parser 
is the recursive descent 
parser. 
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Recursive Descent Parsing 
Recall the expression grammar, after transformation 

This produces a parser with six 
mutually recursive routines: 
•  Goal 
•  Expr 
•  EPrime 
•  Term 
•  TPrime 
•  Factor 
Each recognizes one NT or T 

The term descent refers to the 
direction in which the parse tree 
is built. 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Term Expr’ 
3 | - Term Expr’ 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Factor Term’ 
7 | / Factor Term’ 
8 | ε 
9 Factor → ( Expr ) 
10 | number 
11 | id 
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Recursive Descent Parsing            (Procedural) 
A couple of routines from the expression parser 

Goal( ) 
     token ← next_token( ); 
     if (Expr( ) = true & token = EOF)  
         then next compilation step; 
         else  
              report syntax error; 
              return false; 
 
Expr( ) 
   if (Term( ) = false)  
      then return false; 
      else return Eprime( ); 

Factor( ) 
   if (token = Number) then 
       token ← next_token( ); 
       return true; 
   else if (token = Identifier) then 
        token ← next_token( ); 
        return true; 
   else if (token = Lparen) 
        token ← next_token( ); 
        if (Expr( ) = true & token = Rparen) then 
            token ← next_token( ); 
            return true; 
   // fall out of if statement 
   report syntax error; 
         return false; 
   

looking for Number, Identifier, or 
“(“, found token instead, or failed 
to find Expr or “)” after “(” 

EPrime, Term, & TPrime follow the same 
basic lines (Figure 3.7, EAC) 
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Classic Expression Grammar 
Symbol FIRST FOLLOW 

num num Ø 
id id Ø 
+ + Ø 
- - Ø 
* * Ø 
/ / Ø 
( ( Ø 
) ) Ø 

eof eof Ø 
ε ε Ø 

Goal (,id,num eof 
Expr (,id,num ), eof 
Expr’ +, -, ε ), eof 
Term (,id,num +, -, ), eof 
Term’ *, /, ε +,-, ), eof 

Factor (,id,num +,-,*,/,),eof 

FIRST+(A→β ) is identical to FIRST(β ) 
except for productiond 4 and 8 

FIRST+(Expr’→ ε) is {ε,), eof} 

FIRST+(Term’→ ε) is {ε,+,-, ), eof} 

0 Goal → Expr 
1 Expr → Term Expr’ 
2 Expr’ → + Term Expr’ 
3 | - Term Expr’ 
4 | ε 
5 Term → Factor Term’ 
6 Term’ → * Factor Term’ 
7 | / Factor Term’ 
8 | ε 
9 Factor → number 
10 | id 
11 | ( Expr ) 
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Building Top-down Parsers 
Building the complete table 
•  Need a row for every NT & a column for every T 
•  Need an interpreter for the table (skeleton parser) 
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LL(1) Expression Parsing Table 

+ – * / Id Num ( ) EOF 

Goal — — — — 0 0 0 — — 

Expr — — — — 1 1 1 — — 

Expr’ 2 3 — — — — — 4 4 

Term — — — — 5 5 5 — — 

Term’ 8 8 6 7 — — — 8 8 

Factor — — — — 10 9 11 — — 
Row we built 
earlier 
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LL(1) Skeleton Parser 
word ← NextWord()             // Initial conditions, including  
push EOF onto Stack             // a stack to track local goals 
push the start symbol, S, onto Stack 
TOS ← top of Stack 
loop forever 
   if TOS = EOF and word = EOF then 
       break & report success   // exit on success 
    else if TOS is a terminal then 
       if TOS matches word then 
           pop Stack        // recognized TOS 
           word ← NextWord() 
       else report error looking for TOS  // error exit 
    else            // TOS is a non-terminal 
       if TABLE[TOS,word] is A→ B1B2…Bk then 
           pop Stack                  // get rid of A 
           push Bk, Bk-1, …, B1      // in that order 
       else break & report error expanding TOS 
   TOS ← top of Stack 
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Bottom-up Parsing                          (definitions) 
The point of parsing is to construct a derivation 

A derivation consists of a series of rewrite steps 
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence 

•  Each γi is a sentential form  
—  If γ contains only terminal symbols, γ is a sentence in L(G)  
—  If γ contains 1 or more non-terminals, γ is a sentential form 

•  To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β 
—  Replace the occurrence of A ∈ γi–1 with β to get γi  
—  In a leftmost derivation, it would be the first NT A ∈ γi–1  

A left-sentential form occurs in a leftmost derivation 
A right-sentential form occurs in a rightmost derivation 

Bottom-up parsers build a rightmost derivation in reverse 

We saw this definition earlier 
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Bottom-up Parsing                          (definitions) 
A bottom-up parser builds a derivation by working from 
the input sentence back toward the start symbol S  

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence 

To reduce γi  to γi–1 match some rhs  β against γi then  replace β 
with its corresponding lhs, A.    (assuming the production A→β)  

In terms of the parse tree, it works from leaves to root 
•  Nodes  with no parent in a partial tree form its upper fringe  
•  Since each replacement of β with A shrinks the upper fringe,  
      we call it a reduction. 
•  “Rightmost derivation in reverse” processes words left to right 
The parse tree need not be built, it can be simulated 

|parse tree nodes |  =  |terminal symbols | + |reductions | 

bottom-up 
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Finding Reductions 
Consider the grammar 

And the input string abbcde 

The trick is scanning the input and finding the next reduction 
The mechanism for doing this must be efficient 

While the process of finding the next reduction appears to be almost oracular, it 
can be automated in an efficient way for a large class of grammars 

0 Goal → a A B e 
1 A → A b c 
2 | b 
3 B → d 

Sentential Next Reduction 
Form Prod’n Pos’n 

abbcde 2 2 
a A bcde 1 4 
a A de 3 3 
a A B e 0 4 

Goal — — 

“Position” specifies where the right end of 
β occurs in the current sentential form.  
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Finding Reductions                              (Handles) 
The parser must find a substring β of the tree’s frontier that  

matches some production A → β that occurs as one step  
in the rightmost derivation                        (⇒ β → A is in RRD) 

Informally, we call this substring β a handle 

Formally, 
A handle of a right-sentential form γ is a pair <A→β,k> where 
A→β ∈ P and k is the position in γ of β’s rightmost symbol. 
If <A→β,k> is a handle, then replacing β at k with A produces the 

right sentential form from which γ is derived in the rightmost 
derivation. 

Because γ is a right-sentential form, the substring to the right 
of a handle contains only terminal symbols 

⇒ the parser doesn’t need to scan (much) past the handle 

Most students find handles mystifying; 
bear with me for a couple more slides. 
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Example 

A simple left-recursive form of 
the classic expression grammar Handles for rightmost derivation of  x – 2 * y  

 0 Goal → Expr 
1 Expr → Expr  + Term 
2 | Expr  - Term 
3 | Term 
4 Term → Term  * Factor 
5 | Term / Factor 
6 | Factor 
7 Factor → number 
8 | id 
9 | ( Expr )  

Prod’
n 

Sentential Form Handle 

— Goal — 
0 Expr 0,1 
2 Expr - Term 2,3 
4 Expr - Term * Factor 4,5 
8 Expr - Term * <id,y> 8,5 
6 Expr - Factor * <id,y> 6,3 
7 Expr - <num,2> * <id,y> 7,3 
3 Term - <num,2> * <id,y> 3,1 
6 Factor - <num,2> * <id,y> 6,1 
8 <id,x> - <num,2> * <id,y> 8,1 parse 

derivation 
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Bottom-up Parsing                    (Abstract View) 
A bottom-up parser repeatedly finds a handle A → β in the 

current right-sentential form and replaces β with A. 

To construct a rightmost derivation 
S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ w 

Apply the following conceptual algorithm 
for i ← n to 1 by –1 
     Find the handle <Ai →βi , ki > in γi  
     Replace βi with Ai to generate γi–1  

This takes 2n steps 
 

of course, n is unknown 
until the derivation is built 

Some authors refer to this algorithm as a handle-pruning parser.  
The idea is that the parser finds a handle on the upper fringe of 
the partially complete parse tree and prunes it out of the fringe. 
The analogy is somewhat strained, so I will try to avoid using it. 



More on Handles 
Bottom-up reduce parsers find a rightmost derivation in 

reverse order 
—  Rightmost derivation ⇒ rightmost NT expanded at each step in 

the derivation 
—  Processed in reverse ⇒ parser proceeds left to right 

These statements are somewhat counter-intuitive 
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More on Handles 
Bottom-up parsers find a reverse rightmost derivation 

•  Process input left to right 
—  Upper fringe of partially completed parse tree is  (NT |T)* T*  
—  The handle always appears with its right end at the junction 

between (NT | T)* and T*   (the hot spot for LR parsing) 
— We can keep the prefix of the upper fringe of the partially 

completed parse tree on a stack 
—  The stack makes the position information irrelevant 

•  Handles appear at the top of the stack 
•  All the information for the decision is at the hot spot 

—  The next word in the input stream 
—  The rightmost NT on the fringe & its immediate left neighbors 
—  In an LR parser, additional information in the form of a “state” 

Comp 412, Fall 2010 41 
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Shift-reduce Parsing 
To implement a bottom-up parser, we adopt the  shift-reduce 

paradigm  

A shift-reduce parser is a stack automaton with four actions 
•  Shift — next word is shifted onto the stack 
•  Reduce — right end of handle is at top of stack 

    Locate left end of handle within the stack 
    Pop handle off stack & push appropriate lhs 

•  Accept — stop parsing & report success 
•  Error  — call an error reporting/recovery routine 

Accept & Error are simple 
Shift is just a push and a call to the scanner 
Reduce takes |rhs| pops & 1 push 
 

But how does the parser know when to shift and when to reduce? 
It shifts until it has a handle at the top of the stack. 
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Bottom-up Parser 
A simple shift-reduce parser: 

push INVALID 
token ← next_token( ) 
repeat until (top of stack = Goal and token = EOF) 
     if the top of the stack is a handle A→β  
          then      // reduce β to A 
               pop |β| symbols off the stack 
               push A onto the stack 
          else if (token ≠ EOF) 
               then // shift  
                     push token  
                     token ← next_token( ) 
           else     // need to shift, but out of input  

 report an error    

Figure 3.7 in EAC 

What happens on an error? 

•  It fails to find a handle 

•  Thus, it keeps shifting 
•  Eventually, it consumes 
   all input 

This parser reads all input 
before reporting an error, 
not a desirable property. 

Error localization is an 
issue in the handle-finding 
process that affects the 
practicality of shift-reduce 
parsers… 

We will fix this issue later. 
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Back to x - 2 * y 

5 shifts +  
9 reduces + 
1 accept 

Stack Input Handle Action 
$ id - num * id none shift 
$ id - num * id 8,1 reduce 8 
$ Factor - num * id 6,1 reduce 6 
$ Term - num * id 3,1 reduce 3 
$ Expr - num * id none shift 
$ Expr - num * id none shift 
$ Expr - num * id 7,3 reduce 7 
$ Expr - Factor * id 6,3 reduce 6 
$ Expr - Term * id none shift 
$ Expr - Term *  id none shift 
$ Expr - Term * id 8,5 reduce 8 
$ Expr - Term * Factor 4,5 reduce 4 
$ Expr - Term 2,3 reduce 2 
$ Expr 0,1 reduce 0 
$ Goal none accept 

1. Shift until the top of the stack is the right end of a handle 
2. Find the left end of the handle and reduce  

 0 Goal → Expr 

1 Expr → Expr + Term 

2 | Expr - Term 

3 | Term 

4 Term → Term * Factor 

5 | Term / Factor 

6 | Factor 

7 Factor → number 

8 | id 

9 | ( Expr )  
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Goal 

<id,x> 

Term 

Fact. 

Expr – 

Expr 

<id,y> 

<num,2> 

Fact. 

Fact. Term 

Term 

* 

Stack Input Action 
$ id - num * id shift 
$ id - num * id reduce 8 
$ Factor - num * id reduce 6 
$ Term - num * id reduce 3 
$ Expr - num * id shift 
$ Expr - num * id shift 
$ Expr - num * id reduce 7 
$ Expr - Factor * id reduce 6 
$ Expr - Term * id shift 
$ Expr - Term *  id shift 
$ Expr - Term * id reduce 8 
$ Expr - Term * Factor reduce 4 
$ Expr - Term reduce 2 
$ Expr reduce 0 
$ Goal accept 

Back to x - 2 * y 

Corresponding Parse Tree 
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LR(1) Parsers 
•  LR(1) parsers are table-driven, shift-reduce parsers that 
     use a limited right context (1 token) for handle recognition 
•  The class of grammars that these parsers recognize is called the 

set of LR(1) grammars 

Informal definition: 
A grammar is LR(1) if, given a rightmost derivation 

S ⇒ γ0  ⇒ γ1  ⇒ γ2  ⇒ …  ⇒ γn–1 ⇒ γn ⇒ sentence 
We can  

1. isolate the handle of each right-sentential form γi, and  
2. determine the production by which to reduce, 

by scanning γi from left-to-right, going at most 1 symbol beyond 
the right end of the handle of γi  

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse), 
and 1 word of lookahead. 
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LR(1) Parsers 
A table-driven LR(1) parser looks like 
 

Tables can be built by hand 
However, this is a perfect task to automate 

Scanner Table-driven 
Parser 

ACTION &  
GOTO 
Tables 

Parser 
Generator 

source 
code 

grammar 

IR 
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LR(1) Skeleton Parser 

stack.push(INVALID); 
stack.push(s0);                              // initial state 
token = scanner.next_token(); 
loop forever { 
    s = stack.top(); 
    if ( ACTION[s,token] == “reduce A→β” ) then { 

     stack.popnum(2*|β|);       // pop 2*|β| symbols 
             s = stack.top();  
             stack.push(A);                 // push A 
             stack.push(GOTO[s,A]);  // push next state 

 } 
    else if ( ACTION[s,token] == “shift si” ) then { 

  stack.push(token); stack.push(si); 
  token ← scanner.next_token(); 
 } 

    else if ( ACTION[s,token] == “accept”   
    & token == EOF ) 
  then break;  
 else throw a syntax error; 

}  
report success; 

The skeleton parser  
•  relies on a stack & a scanner 
•  uses two tables, called 

ACTION & GOTO 
 ACTION: state x word → state 

    GOTO: state x NT → state 
•  shifts |words| times 
•  reduces |derivation| times 
•  accepts at most once 
•  detects errors by failure of 

the other three cases  
•  follows basic scheme for 

shift-reduce parsing from 
last lecture 
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To make a parser for L(G), need a set of tables 

The grammar  

The tables 

LR(1) Parsers                                              (parse tables) 

Remember, this is 
the left-recursive 
SheepNoise; EaC 
shows the right-
recursive version. 1 Goal → SheepNoise 

2 SheepNoise → SheepNoise baa 
3 | baa 

ACTION Table 
State EOF baa 

0 — shift 2 
1 accept shift 3 
2 reduce 3  reduce 3 
3 reduce 2 reduce 2 

GOTO Table 
State SheepNoise 

0 1 
1 0 
2 0 
3 0 
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The string baa 

Example Parse 1 

1 Goal → SheepNoise 
2 SheepNoise → SheepNoise baa 
3 | baa 

Stack Input Action 
$ s0  baa EOF shift 2 
$ s0 baa s2 EOF reduce 3 
$ s0 SN s1 EOF accept 

ACTION Table 
State EOF baa 

0 — shift 2 
1 accept shift 3 
2 reduce 3  reduce 3 
3 reduce 2 reduce 2 

GOTO Table 
State SheepNoise 

0 1 
1 0 
2 0 
3 0 
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The string baa baa 

Example Parse 2 

ACTION Table 
State EOF baa 

0 — shift 2 
1 accept shift 3 
2 reduce 3  reduce 3 
3 reduce 2 reduce 2 

GOTO Table 
State SheepNoise 

0 1 
1 0 
2 0 
3 0 

Stack Input Action 
$ s0  baa baa EOF shift 2 
$ s0 baa s2 baa EOF reduce 3 
$ s0 SN s1 baa EOF shift 3 
$ s0 SN s1 baa s3 EOF reduce 2 
$ s0 SN s1 EOF accept 

1 Goal → SheepNoise 
2 SheepNoise → SheepNoise baa 
3 | baa 
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LR(1) Parsers 
How does this LR(1) stuff work? 
•  Unambiguous grammar ⇒ unique rightmost derivation 
•  Keep upper fringe on a stack 

—  All active handles include top of stack (TOS) 
—  Shift inputs until TOS is right end of a handle 

•  Language of handles is regular (finite) 
—  Build a handle-recognizing DFA 
—  ACTION & GOTO  tables encode the DFA 

•  To match subterm, invoke subterm DFA 
   & leave old DFA’s state on stack 
•  Final state in DFA ⇒ a reduce action 

— New state is GOTO[state at TOS (after pop), lhs] 
—  For SN, this takes the DFA to s1 

S0 

S3 

S2 

S1 

baa 

baa 

SN 

Control DFA for SN 

Reduce 
action 



Language of balanced parentheses 
•  Beyond power of REs 
•  Exhibits role of context in LR(1) 
     parsing 
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The Parentheses Language 

0 Goal → List 

1 List → List Pair 

2 | Pair 

3 Pair → ( Pair ) 

4 | ( )  
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The Parentheses Language 
ACTION TABLE 

State eof ( ) 
0 S 3 
1 acc S 3 
2 R 2 R 2 
3 S 6 S 7 
4 R 1 R 1 
5 S 8 
6 S 6 S 10 
7 R 4 R 4 
8 R 3 R 3 
9 S 11 
10 R 4 
11 R 3 

GOTO TABLE 
State List Pair 

0 1 2 
1 4 
2 
3 5 
4 
5 
6 9 
7 
8 
9 
10 
11 

0 Goal → List 
1 List → List Pair 
2 | Pair 
3 Pair → ( Pair ) 
4 | ( )  
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The Parentheses Language 

0 Goal → List 
1 List → List Pair 
2 | Pair 
3 Pair → ( Pair ) 
4 | ( )  

State Lookahead Stack Handle Action 

— ( $ 0 —none— — 

0 ( $ 0 —none— shift 3 

3 ) $ 0 ( 3 —none— shift 7 

7 eof $ 0 ( 3 ) 7 ( ) reduce 4 

2 eof $ 0 Pair 2 Pair reduce 2 

1 eof $ 0 List 1  List accept 

Parsing “( )” 
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The Parentheses Language 
State L’ahead Stack Handle Action 

— ( $ 0 —none— — 

0 ( $ 0 —none— shift 3 

3 ( $ 0 ( 3 —none— shift 6 

6 ) $ 0 ( 3 ( 6 —none—  shift 10 

10 ) $ 0 ( 3 ( 6 ) 10 ( ) reduce 4 

5 ) $ 0 ( 3 Pair 5  —none— shift 8 

8 ( $ 0 ( 3 Pair 5 ) 8 ( Pair ) reduce 3 

2 ( $ 0 Pair 2 Pair reduce 2 

1 ( $ 0 List 1 —none— shift 3 

3 ) $ 0 List 1 ( 3 —none— shift 7 

7 eof $ 0 List 1 ( 3 ) 7 ( ) reduce 4 

4 eof $ 0 List 1 Pair 4 List Pair reduce 1 

1 eof $ 0 List 1 List accept 

Parsing  
“(( )) ( )” 

0 Goal → List 
1 List → List Pair 
2 | Pair 
3 Pair → ( Pair ) 
4 | ( )  
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LR(1) Parsers 
How does this LR(1) stuff work? 
•  Unambiguous grammar ⇒ unique rightmost derivation 
•  Keep upper fringe on a stack 

—  All active handles include top of stack (TOS) 
—  Shift inputs until TOS is right end of a handle 

•  Language of handles is regular (finite) 
—  Build a handle-recognizing DFA to control the stack-based recognizer 
—  ACTION & GOTO  tables encode the DFA 

•  To match a subterm, invoke the DFA recursively 
—  leave old DFA’s state on stack and go on 

•  Final state in DFA ⇒ a reduce action 
—  Pop rhs off the stack to reveal invoking state 

→  “It would be legal to recognize an x, and we did …” 
—  New state is GOTO[revealed state, lhs] 
—  Take a DFA transition on the new NT — the lhs we just pushed… 
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LR(1) Parsers 
The Control DFA for the Parentheses Language 
 
 
 
 
 
 
 
 

Transitions on terminals represent shift actions           [ACTION] 
Transitions on nonterminals represent reduce actions     [GOTO] 

The table construction derives this DFA from the grammar  

Control DFA for  the 
Parentheses Language 

S0 

S1 

S2 

S3 S6 S9 S11 

S4 S5 S8 

S7 S10 

Pair 
( List 

Pair 

Pair 

Pair 

) ) 

) 

) 
( 

( ( 
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Building LR(1) Tables 

Slides removed for time 
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Summary 

Advantages 

Fast 
Good locality 
Simplicity 
Good error detection 
 
Fast  
Deterministic langs. 
Automatable 
Left associativity 

Disadvantages 

Hand-coded 
High maintenance 
Right associativity 
 
 
 
Large working sets 
Poor error messages 
Large table sizes 

Top-down 
recursive 
descent 

LR(1) 


