
Introduction to Parsing

Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Comp 412, Fall 2010 1

The Front End

Parser
•  Checks the stream of words and their parts of speech

(produced by the scanner) for grammatical correctness
•  Determines if the input is syntactically well formed
•  Guides checking at deeper levels than syntax
•  Builds an IR representation of the code

Think of this chapter as the mathematics of diagramming sentences

Source
code Scanner

IR
Parser

Errors

tokens

Comp 412, Fall 2010 2

The Study of Parsing
The process of discovering a derivation for some sentence
•  Need a mathematical model of syntax — a grammar G
•  Need an algorithm for testing membership in L(G)
•  Need to keep in mind that our goal is building parsers, not

studying the mathematics of arbitrary languages

Roadmap for our study of parsing
1  Context-free grammars and derivations
2  Top-down parsing

—  Generated LL(1) parsers & hand-coded recursive descent
parsers

3  Bottom-up parsing
—  Generated LR(1) parsers

Comp 412, Fall 2010 3

Specifying Syntax with a Grammar
Context-free syntax is specified with a context-free grammar

 SheepNoise → SheepNoise baa
 | baa

This CFG defines the set of noises sheep normally make

It is written in a variant of Backus–Naur form

Formally, a grammar is a four tuple, G = (S,N,T,P)
•  S is the start symbol (set of strings in L(G))
•  N is a set of nonterminal symbols (syntactic variables)
•  T is a set of terminal symbols (words)
•  P is a set of productions or rewrite rules (P : N → (N ∪ T)+)
 Example due to Dr. Scott K. Warren

From Lecture 1

Comp 412, Fall 2010 4

Why Not Use Regular Languages & DFAs?

Removed for time

Context-free Grammars
What makes a grammar “context free”?

The SheepNoise grammar has a specific form:

 SheepNoise → SheepNoise baa
 | baa

Productions have a single nonterminal on the left hand side,
which makes it impossible to encode left or right context.

⇒ The grammar is context free.

A context-sensitive grammar can have ≥ 1 nonterminal on lhs.

Notice that L(SheepNoise) is actually a regular language: baa
+

Comp 412, Fall 2010 5
Classic definition: any language that can be recognized
by a push-down automaton is a context-free language.

Comp 412, Fall 2010 6

A More Useful Grammar Than Sheep Noise
To explore the uses of CFGs,we need a more complex grammar

•  Such a sequence of rewrites is called a derivation
•  Process of discovering a derivation is called parsing

We denote this derivation: Expr ⇒* id – num * id

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

0 Expr → Expr Op Expr
1 | number
2 | id
3 Op → +
4 | -
5 | *
6 | /

Comp 412, Fall 2010 7

Derivations
The point of parsing is to construct a derivation

•  At each step, we choose a nonterminal to replace
•  Different choices can lead to different derivations

Two derivations are of interest
•  Leftmost derivation — replace leftmost NT at each step
•  Rightmost derivation — replace rightmost NT at each step

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

The example on the preceding slide was a leftmost derivation
•  Of course, there is also a rightmost derivation
•  Interestingly, it turns out to be different

Comp 412, Fall 2010 8

Derivations and Parse Trees
Leftmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

Comp 412, Fall 2010 9

Derivations and Parse Trees
Rightmost derivation

x 2

G

E

Op E E

E Op E y

–

*

This evaluates as (x – 2) * y

This ambiguity is NOT good

Rule Sentential Form
— Expr
0 Expr Op Expr
2 Expr Op <id,y>
5 Expr * <id,y>
0 Expr Op Expr * <id,y>
1 Expr Op <num,2> * <id,y>
4 Expr - <num,2> * <id,y>
2 <id,x> - <num,2> * <id,y>

Comp 412, Fall 2010 10

Derivations and Precedence

These two derivations point out a problem with the grammar:

It has no notion of precedence, or implied order of evaluation

To add precedence
•  Create a nonterminal for each level of precedence
•  Isolate the corresponding part of the grammar
•  Force the parser to recognize high precedence

subexpressions first

For algebraic expressions
•  Parentheses first (level 1)
•  Multiplication and division, next (level 2)
•  Subtraction and addition, last (level 3)

Adding the standard algebraic precedence produces:
0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → (Expr)
8 | number
9 | id

Comp 412, Fall 2010 11

Derivations and Precedence

This grammar is slightly larger
• Takes more rewriting to reach
some of the terminal symbols
• Encodes expected precedence
• Produces same parse tree under
leftmost & rightmost derivations
• Correctness trumps the speed
of the parser

Let’s see how it parses x - 2 * y

level
2

level
3

Cannot handle precedence
in an RE for expressions

Introduced parentheses, too
(beyond power of an RE)

level
1

One form of the “classic expression grammar”

Comp 412, Fall 2010 12

Derivations and Precedence

The rightmost derivation

It derives x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression, because
the grammar directly and explicitly encodes the desired precedence.

G

E

– E

T

F

<id,x>

T

T

F

F *

<num,2>

<id,y>

Its parse tree

Rule Sentential Form
— Goal
0 Expr
2 Expr - Term
4 Expr - Term * Factor
9 Expr - Term * <id,y>
6 Expr - Factor * <id,y>
8 Expr - <num,2> * <id,y>
3 Term - <num,2> * <id,y>
6 Factor - <num,2> * <id,y>
9 <id,x> - <num,2> * <id,y>

Comp 412, Fall 2010 13

Ambiguity
This sentential form has two derivations

if Expr1 then if Expr2 then Stmt1 else Stmt2

then

else

if

then

if

E1

E2

S2

S1

production 2, then
production 1

then

if

then

if

E1

E2

S1

else

S2

production 1, then
production 2

Removed for time

Top Down Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Comp 412, Fall 2010 15

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
•  Start at the root of the parse tree and grow toward leaves
•  Pick a production & try to match the input
•  Bad “pick” ⇒ may need to backtrack
•  Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
•  Start at the leaves and grow toward root
•  As input is consumed, encode possibilities in an internal state
•  Start in a state valid for legal first tokens
•  Bottom-up parsers handle a large class of grammars

Comp 412, Fall 2010 16

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until lower fringe of the parse tree matches the input string
1  At a node labeled A, select a production with A on its lhs and, for

each symbol on its rhs, construct the appropriate child
2  When a terminal symbol is added to the fringe and it doesn’t

match the fringe, backtrack
3  Find the next node to be expanded (label ∈ NT)

The key is picking the right production in step 1
—  That choice should be guided by the input string

Top-down Parsing

Comp 412, Fall 2010 17

Remember the expression grammar?

And the input x – 2 * y

We will call this version “the classic expression grammar”

0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → (Expr)
8 | number
9 | id

Comp 412, Fall 2010 18

Where are we?
•  “2” matches “2”
•  We have more input, but no NTs left to expand
•  The expansion terminated too soon
⇒  Need to backtrack

Example
Trying to match the “2” in x – 2 * y :

Goal

Expr

Term - Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
6 <id,x> - Factor x - ↑2 * y
8 <id,x> - <num,2> x - ↑2 * y
→ <id,x> - <num,2> x - 2 ↑* y

Comp 412, Fall 2010 19

Example
Trying again with “2” in x – 2 * y :

Goal

Expr

Term – Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input
⇒ Success!

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
4 <id,x> - Term * Factor x - ↑2 * y
6 <id,x> - Factor * Factor x - ↑2 * y
8 <id,x> - <num,2> * Factor x - ↑2 * y
→ <id,x> - <num,2> * Factor x - 2 ↑* y
→ <id,x> - <num,2> * Factor x - 2 * ↑y
9 <id,x> - <num,2> * <id,y> x - 2 * ↑y
→ <id,x> - <num,2> * <id,y> x - 2 * y↑

The Point:
The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

Comp 412, Fall 2010 20

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if ∃ A ∈ NT such that
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T)+

Our classic expression grammar is left recursive
•  This can lead to non-termination in a top-down parser
•  In a top-down parser, any recursion must be right recursion
•  We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

Comp 412, Fall 2010 21

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee → Fee α
 | β

where neither α nor β start with Fee

We can rewrite this fragment as
Fee → β Fie
Fie → α Fie

 | ε
where Fie is a new non-terminal

The new grammar defines
the same language as the
old grammar, using only
right recursion.

Added a reference
to the empty string

Comp 412, Fall 2010 22

Eliminating Left Recursion
Substituting them back into the grammar yields

• This grammar is correct, if
somewhat non-intuitive.

• It is left associative, as was
the original
⇒ The naïve transformation

yields a right recursive
grammar, which changes the
implicit associativity

• A top-down parser will
terminate using it.

• A top-down parser may need
to backtrack with it.

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε
5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε
9 Factor → (Expr)
10 | number
11 | id

Comp 412, Fall 2010 23

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
•  In general, an arbitrarily large amount
•  Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,
•  Large subclasses of CFGs can be parsed with limited lookahead
•  Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

We will focus, for now, on LL(1) grammars & predictive parsing

Comp 412, Fall 2010 24

Predictive Parsing
Basic idea

Given A → α | β, the parser should be able to choose between α & β

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α
That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

We will defer the problem of how to compute FIRST sets for
the moment.

Comp 412, Fall 2010 25

Predictive Parsing

What about ε-productions?
⇒  They complicate the definition of LL(1)

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure
that FIRST(β) is disjoint from FOLLOW(A), too, where

FOLLOW(A) = the set of terminal symbols that can immediately
follow A in a sentential form

Define FIRST+(A→α) as
•  FIRST(α) ∪ FOLLOW(A), if ε ∈ FIRST(α)
•  FIRST(α), otherwise

Then, a grammar is LL(1) iff A → α and A → β implies
 FIRST+(A→α) ∩ FIRST+(A→β) = ∅

Comp 412, Fall 2010 26

Predictive Parsing
Given a grammar that has the LL(1) property
•  Can write a simple routine to recognize each lhs
•  Code is both simple & fast

Consider A → β1 | β2 | β3, with
FIRST+(A→βi) ∩ FIRST+ (A→βj) = ∅ if i ≠ j

/* find an A */
if (current_word ∈ FIRST(A→β1))
 find a β1 and return true
else if (current_word ∈ FIRST(A→β2))
 find a β2 and return true
else if (current_word ∈ FIRST(A→β3))
 find a β3 and return true
else
 report an error and return false

Of course, there is more detail to
“find a βi” (p. 103 in EAC, 1st Ed.)

Grammars with the LL(1)
property are called predictive
grammars because the parser
can “predict” the correct
expansion at each point in the
parse.
Parsers that capitalize on the
LL(1) property are called
predictive parsers.
One kind of predictive parser
is the recursive descent
parser.

Comp 412, Fall 2010 27

Recursive Descent Parsing
Recall the expression grammar, after transformation

This produces a parser with six
mutually recursive routines:
•  Goal
•  Expr
•  EPrime
•  Term
•  TPrime
•  Factor
Each recognizes one NT or T

The term descent refers to the
direction in which the parse tree
is built.

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε
5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε
9 Factor → (Expr)
10 | number
11 | id

Comp 412, Fall 2010 28

Recursive Descent Parsing (Procedural)
A couple of routines from the expression parser

Goal()
 token ← next_token();
 if (Expr() = true & token = EOF)
 then next compilation step;
 else
 report syntax error;
 return false;

Expr()
 if (Term() = false)
 then return false;
 else return Eprime();

Factor()
 if (token = Number) then
 token ← next_token();
 return true;
 else if (token = Identifier) then
 token ← next_token();
 return true;
 else if (token = Lparen)
 token ← next_token();
 if (Expr() = true & token = Rparen) then
 token ← next_token();
 return true;
 // fall out of if statement
 report syntax error;
 return false;

looking for Number, Identifier, or
“(“, found token instead, or failed
to find Expr or “)” after “(”

EPrime, Term, & TPrime follow the same
basic lines (Figure 3.7, EAC)

Comp 412, Fall 2010 29

Classic Expression Grammar
Symbol FIRST FOLLOW

num num Ø
id id Ø
+ + Ø
- - Ø
* * Ø
/ / Ø
((Ø
)) Ø

eof eof Ø
ε ε Ø

Goal (,id,num eof
Expr (,id,num), eof
Expr’ +, -, ε), eof
Term (,id,num +, -,), eof
Term’ *, /, ε +,-,), eof

Factor (,id,num +,-,*,/,),eof

FIRST+(A→β) is identical to FIRST(β)
except for productiond 4 and 8

FIRST+(Expr’→ ε) is {ε,), eof}

FIRST+(Term’→ ε) is {ε,+,-,), eof}

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε
5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε
9 Factor → number
10 | id
11 | (Expr)

Comp 412, Fall 2010 30

Building Top-down Parsers
Building the complete table
•  Need a row for every NT & a column for every T
•  Need an interpreter for the table (skeleton parser)

Comp 412, Fall 2010
31

LL(1) Expression Parsing Table

+ – * / Id Num () EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —
Row we built
earlier

Comp 412, Fall 2010 32

LL(1) Skeleton Parser
word ← NextWord() // Initial conditions, including
push EOF onto Stack // a stack to track local goals
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
 if TOS = EOF and word = EOF then
 break & report success // exit on success
 else if TOS is a terminal then
 if TOS matches word then
 pop Stack // recognized TOS
 word ← NextWord()
 else report error looking for TOS // error exit
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A→ B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 else break & report error expanding TOS
 TOS ← top of Stack

Bottom-up Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Comp 412, Fall 2010 34

Bottom-up Parsing (definitions)
The point of parsing is to construct a derivation

A derivation consists of a series of rewrite steps
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

•  Each γi is a sentential form
—  If γ contains only terminal symbols, γ is a sentence in L(G)
—  If γ contains 1 or more non-terminals, γ is a sentential form

•  To get γi from γi–1, expand some NT A ∈ γi–1 by using A →β
—  Replace the occurrence of A ∈ γi–1 with β to get γi
—  In a leftmost derivation, it would be the first NT A ∈ γi–1

A left-sentential form occurs in a leftmost derivation
A right-sentential form occurs in a rightmost derivation

Bottom-up parsers build a rightmost derivation in reverse

We saw this definition earlier

Comp 412, Fall 2010 35

Bottom-up Parsing (definitions)
A bottom-up parser builds a derivation by working from
the input sentence back toward the start symbol S

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence

To reduce γi to γi–1 match some rhs β against γi then replace β
with its corresponding lhs, A. (assuming the production A→β)

In terms of the parse tree, it works from leaves to root
•  Nodes with no parent in a partial tree form its upper fringe
•  Since each replacement of β with A shrinks the upper fringe,
 we call it a reduction.
•  “Rightmost derivation in reverse” processes words left to right
The parse tree need not be built, it can be simulated

|parse tree nodes | = |terminal symbols | + |reductions |

bottom-up

Comp 412, Fall 2010 36

Finding Reductions
Consider the grammar

And the input string abbcde

The trick is scanning the input and finding the next reduction
The mechanism for doing this must be efficient

While the process of finding the next reduction appears to be almost oracular, it
can be automated in an efficient way for a large class of grammars

0 Goal → a A B e
1 A → A b c
2 | b
3 B → d

Sentential Next Reduction
Form Prod’n Pos’n

abbcde 2 2
a A bcde 1 4
a A de 3 3
a A B e 0 4

Goal — —

“Position” specifies where the right end of
β occurs in the current sentential form.

Comp 412, Fall 2010 37

Finding Reductions (Handles)
The parser must find a substring β of the tree’s frontier that

matches some production A → β that occurs as one step
in the rightmost derivation (⇒ β → A is in RRD)

Informally, we call this substring β a handle

Formally,
A handle of a right-sentential form γ is a pair <A→β,k> where
A→β ∈ P and k is the position in γ of β’s rightmost symbol.
If <A→β,k> is a handle, then replacing β at k with A produces the

right sentential form from which γ is derived in the rightmost
derivation.

Because γ is a right-sentential form, the substring to the right
of a handle contains only terminal symbols

⇒ the parser doesn’t need to scan (much) past the handle

Most students find handles mystifying;
bear with me for a couple more slides.

Comp 412, Fall 2010 38

Example

A simple left-recursive form of
the classic expression grammar Handles for rightmost derivation of x – 2 * y

 0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → number
8 | id
9 | (Expr)

Prod’
n

Sentential Form Handle

— Goal —
0 Expr 0,1
2 Expr - Term 2,3
4 Expr - Term * Factor 4,5
8 Expr - Term * <id,y> 8,5
6 Expr - Factor * <id,y> 6,3
7 Expr - <num,2> * <id,y> 7,3
3 Term - <num,2> * <id,y> 3,1
6 Factor - <num,2> * <id,y> 6,1
8 <id,x> - <num,2> * <id,y> 8,1 parse

derivation

Comp 412, Fall 2010 39

Bottom-up Parsing (Abstract View)
A bottom-up parser repeatedly finds a handle A → β in the

current right-sentential form and replaces β with A.

To construct a rightmost derivation
S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ w

Apply the following conceptual algorithm
for i ← n to 1 by –1
 Find the handle <Ai →βi , ki > in γi
 Replace βi with Ai to generate γi–1

This takes 2n steps

of course, n is unknown
until the derivation is built

Some authors refer to this algorithm as a handle-pruning parser.
The idea is that the parser finds a handle on the upper fringe of
the partially complete parse tree and prunes it out of the fringe.
The analogy is somewhat strained, so I will try to avoid using it.

More on Handles
Bottom-up reduce parsers find a rightmost derivation in

reverse order
—  Rightmost derivation ⇒ rightmost NT expanded at each step in

the derivation
—  Processed in reverse ⇒ parser proceeds left to right

These statements are somewhat counter-intuitive

Comp 412, Fall 2010 40

More on Handles
Bottom-up parsers find a reverse rightmost derivation

•  Process input left to right
—  Upper fringe of partially completed parse tree is (NT |T)* T*
—  The handle always appears with its right end at the junction

between (NT | T)* and T* (the hot spot for LR parsing)
— We can keep the prefix of the upper fringe of the partially

completed parse tree on a stack
—  The stack makes the position information irrelevant

•  Handles appear at the top of the stack
•  All the information for the decision is at the hot spot

—  The next word in the input stream
—  The rightmost NT on the fringe & its immediate left neighbors
—  In an LR parser, additional information in the form of a “state”

Comp 412, Fall 2010 41

Comp 412, Fall 2010 42

Shift-reduce Parsing
To implement a bottom-up parser, we adopt the shift-reduce

paradigm

A shift-reduce parser is a stack automaton with four actions
•  Shift — next word is shifted onto the stack
•  Reduce — right end of handle is at top of stack

 Locate left end of handle within the stack
 Pop handle off stack & push appropriate lhs

•  Accept — stop parsing & report success
•  Error — call an error reporting/recovery routine

Accept & Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops & 1 push

But how does the parser know when to shift and when to reduce?
It shifts until it has a handle at the top of the stack.

Comp 412, Fall 2010 43

Bottom-up Parser
A simple shift-reduce parser:

push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
 if the top of the stack is a handle A→β
 then // reduce β to A
 pop |β| symbols off the stack
 push A onto the stack
 else if (token ≠ EOF)
 then // shift
 push token
 token ← next_token()
 else // need to shift, but out of input

 report an error

Figure 3.7 in EAC

What happens on an error?

•  It fails to find a handle

•  Thus, it keeps shifting
•  Eventually, it consumes
 all input

This parser reads all input
before reporting an error,
not a desirable property.

Error localization is an
issue in the handle-finding
process that affects the
practicality of shift-reduce
parsers…

We will fix this issue later.

Comp 412, Fall 2010 44

Back to x - 2 * y

5 shifts +
9 reduces +
1 accept

Stack Input Handle Action
$ id - num * id none shift
$ id - num * id 8,1 reduce 8
$ Factor - num * id 6,1 reduce 6
$ Term - num * id 3,1 reduce 3
$ Expr - num * id none shift
$ Expr - num * id none shift
$ Expr - num * id 7,3 reduce 7
$ Expr - Factor * id 6,3 reduce 6
$ Expr - Term * id none shift
$ Expr - Term * id none shift
$ Expr - Term * id 8,5 reduce 8
$ Expr - Term * Factor 4,5 reduce 4
$ Expr - Term 2,3 reduce 2
$ Expr 0,1 reduce 0
$ Goal none accept

1. Shift until the top of the stack is the right end of a handle
2. Find the left end of the handle and reduce

 0 Goal → Expr

1 Expr → Expr + Term

2 | Expr - Term

3 | Term

4 Term → Term * Factor

5 | Term / Factor

6 | Factor

7 Factor → number

8 | id

9 | (Expr)

Comp 412, Fall 2010 45

Goal

<id,x>

Term

Fact.

Expr –

Expr

<id,y>

<num,2>

Fact.

Fact. Term

Term

*

Stack Input Action
$ id - num * id shift
$ id - num * id reduce 8
$ Factor - num * id reduce 6
$ Term - num * id reduce 3
$ Expr - num * id shift
$ Expr - num * id shift
$ Expr - num * id reduce 7
$ Expr - Factor * id reduce 6
$ Expr - Term * id shift
$ Expr - Term * id shift
$ Expr - Term * id reduce 8
$ Expr - Term * Factor reduce 4
$ Expr - Term reduce 2
$ Expr reduce 0
$ Goal accept

Back to x - 2 * y

Corresponding Parse Tree

Comp 412, Fall 2010 46

LR(1) Parsers
•  LR(1) parsers are table-driven, shift-reduce parsers that
 use a limited right context (1 token) for handle recognition
•  The class of grammars that these parsers recognize is called the

set of LR(1) grammars

Informal definition:
A grammar is LR(1) if, given a rightmost derivation

S ⇒ γ0 ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γn–1 ⇒ γn ⇒ sentence
We can

1. isolate the handle of each right-sentential form γi, and
2. determine the production by which to reduce,

by scanning γi from left-to-right, going at most 1 symbol beyond
the right end of the handle of γi

LR(1) means left-to-right scan of the input, rightmost derivation (in reverse),
and 1 word of lookahead.

Comp 412, Fall 2010 47

LR(1) Parsers
A table-driven LR(1) parser looks like

Tables can be built by hand
However, this is a perfect task to automate

Scanner Table-driven
Parser

ACTION &
GOTO
Tables

Parser
Generator

source
code

grammar

IR

Comp 412, Fall 2010 48

LR(1) Skeleton Parser

stack.push(INVALID);
stack.push(s0); // initial state
token = scanner.next_token();
loop forever {
 s = stack.top();
 if (ACTION[s,token] == “reduce A→β”) then {

 stack.popnum(2*|β|); // pop 2*|β| symbols
 s = stack.top();
 stack.push(A); // push A
 stack.push(GOTO[s,A]); // push next state

 }
 else if (ACTION[s,token] == “shift si”) then {

 stack.push(token); stack.push(si);
 token ← scanner.next_token();
 }

 else if (ACTION[s,token] == “accept”
 & token == EOF)
 then break;
 else throw a syntax error;

}
report success;

The skeleton parser
•  relies on a stack & a scanner
•  uses two tables, called

ACTION & GOTO
 ACTION: state x word → state

 GOTO: state x NT → state
•  shifts |words| times
•  reduces |derivation| times
•  accepts at most once
•  detects errors by failure of

the other three cases
•  follows basic scheme for

shift-reduce parsing from
last lecture

Comp 412, Fall 2010 49

To make a parser for L(G), need a set of tables

The grammar

The tables

LR(1) Parsers (parse tables)

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version. 1 Goal → SheepNoise

2 SheepNoise → SheepNoise baa
3 | baa

ACTION Table
State EOF baa

0 — shift 2
1 accept shift 3
2 reduce 3 reduce 3
3 reduce 2 reduce 2

GOTO Table
State SheepNoise

0 1
1 0
2 0
3 0

Comp 412, Fall 2010 50

The string baa

Example Parse 1

1 Goal → SheepNoise
2 SheepNoise → SheepNoise baa
3 | baa

Stack Input Action
$ s0 baa EOF shift 2
$ s0 baa s2 EOF reduce 3
$ s0 SN s1 EOF accept

ACTION Table
State EOF baa

0 — shift 2
1 accept shift 3
2 reduce 3 reduce 3
3 reduce 2 reduce 2

GOTO Table
State SheepNoise

0 1
1 0
2 0
3 0

Comp 412, Fall 2010 51

The string baa baa

Example Parse 2

ACTION Table
State EOF baa

0 — shift 2
1 accept shift 3
2 reduce 3 reduce 3
3 reduce 2 reduce 2

GOTO Table
State SheepNoise

0 1
1 0
2 0
3 0

Stack Input Action
$ s0 baa baa EOF shift 2
$ s0 baa s2 baa EOF reduce 3
$ s0 SN s1 baa EOF shift 3
$ s0 SN s1 baa s3 EOF reduce 2
$ s0 SN s1 EOF accept

1 Goal → SheepNoise
2 SheepNoise → SheepNoise baa
3 | baa

Comp 412, Fall 2010 52

LR(1) Parsers
How does this LR(1) stuff work?
•  Unambiguous grammar ⇒ unique rightmost derivation
•  Keep upper fringe on a stack

—  All active handles include top of stack (TOS)
—  Shift inputs until TOS is right end of a handle

•  Language of handles is regular (finite)
—  Build a handle-recognizing DFA
—  ACTION & GOTO tables encode the DFA

•  To match subterm, invoke subterm DFA
 & leave old DFA’s state on stack
•  Final state in DFA ⇒ a reduce action

— New state is GOTO[state at TOS (after pop), lhs]
—  For SN, this takes the DFA to s1

S0

S3

S2

S1

baa

baa

SN

Control DFA for SN

Reduce
action

Language of balanced parentheses
•  Beyond power of REs
•  Exhibits role of context in LR(1)
 parsing

Comp 412, Fall 2010 53

The Parentheses Language

0 Goal → List

1 List → List Pair

2 | Pair

3 Pair → (Pair)

4 | ()

Comp 412, Fall 2010 54

The Parentheses Language
ACTION TABLE

State eof ()
0 S 3
1 acc S 3
2 R 2 R 2
3 S 6 S 7
4 R 1 R 1
5 S 8
6 S 6 S 10
7 R 4 R 4
8 R 3 R 3
9 S 11
10 R 4
11 R 3

GOTO TABLE
State List Pair

0 1 2
1 4
2
3 5
4
5
6 9
7
8
9
10
11

0 Goal → List
1 List → List Pair
2 | Pair
3 Pair → (Pair)
4 | ()

Comp 412, Fall 2010 55

The Parentheses Language

0 Goal → List
1 List → List Pair
2 | Pair
3 Pair → (Pair)
4 | ()

State Lookahead Stack Handle Action

— ($ 0 —none— —

0 ($ 0 —none— shift 3

3) $ 0 (3 —none— shift 7

7 eof $ 0 (3) 7 () reduce 4

2 eof $ 0 Pair 2 Pair reduce 2

1 eof $ 0 List 1 List accept

Parsing “()”

Comp 412, Fall 2010 56

The Parentheses Language
State L’ahead Stack Handle Action

— ($ 0 —none— —

0 ($ 0 —none— shift 3

3 ($ 0 (3 —none— shift 6

6) $ 0 (3 (6 —none— shift 10

10) $ 0 (3 (6) 10 () reduce 4

5) $ 0 (3 Pair 5 —none— shift 8

8 ($ 0 (3 Pair 5) 8 (Pair) reduce 3

2 ($ 0 Pair 2 Pair reduce 2

1 ($ 0 List 1 —none— shift 3

3) $ 0 List 1 (3 —none— shift 7

7 eof $ 0 List 1 (3) 7 () reduce 4

4 eof $ 0 List 1 Pair 4 List Pair reduce 1

1 eof $ 0 List 1 List accept

Parsing
“(()) ()”

0 Goal → List
1 List → List Pair
2 | Pair
3 Pair → (Pair)
4 | ()

Comp 412, Fall 2010 57

LR(1) Parsers
How does this LR(1) stuff work?
•  Unambiguous grammar ⇒ unique rightmost derivation
•  Keep upper fringe on a stack

—  All active handles include top of stack (TOS)
—  Shift inputs until TOS is right end of a handle

•  Language of handles is regular (finite)
—  Build a handle-recognizing DFA to control the stack-based recognizer
—  ACTION & GOTO tables encode the DFA

•  To match a subterm, invoke the DFA recursively
—  leave old DFA’s state on stack and go on

•  Final state in DFA ⇒ a reduce action
—  Pop rhs off the stack to reveal invoking state

→  “It would be legal to recognize an x, and we did …”
—  New state is GOTO[revealed state, lhs]
—  Take a DFA transition on the new NT — the lhs we just pushed…

Comp 412, Fall 2010 58

LR(1) Parsers
The Control DFA for the Parentheses Language

Transitions on terminals represent shift actions [ACTION]
Transitions on nonterminals represent reduce actions [GOTO]

The table construction derives this DFA from the grammar

Control DFA for the
Parentheses Language

S0

S1

S2

S3 S6 S9 S11

S4 S5 S8

S7 S10

Pair
(List

Pair

Pair

Pair

))

)

)
(

((

Comp 412, Fall 2010 59

Building LR(1) Tables

Slides removed for time

Comp 412, Fall 2010 60

Summary

Advantages

Fast
Good locality
Simplicity
Good error detection

Fast
Deterministic langs.
Automatable
Left associativity

Disadvantages

Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
recursive
descent

LR(1)

