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The Course 

•  Text: “Formal Language”, by Adam Book 
Webber, Franklin, Beedle & Associates, 
2007. 

•  Special Features: 
–  Course website with lecture notes 
–  Online gradebook (email me for access code) 



Introduction 
and 

Chapter One: Fundamentals 



No one who loves language can take much pleasure in the prospect 
of studying a subject called formal language. It sounds 

suspiciously abstract and reductionistic. It sounds as if all the 
transcendent beauty of language will be burned away, fired under 
a dry heat of definitions and theorems and proofs, until nothing is 

left but an ash of syntax. It sounds abstract—and it is, 
undeniably. Yet from this abstraction arise some of the most 

beautiful and enduring ideas in all of computer science. 



Why Study Formal Language? 
•  Connected... 

–  ...to many other branches of knowledge 
•  Rigorous... 

–  ...mathematics with many open questions at the frontiers 
•  Useful... 

–  ...with many applications in computer systems, particularly in 
programming languages and compilers 

•  Accessible... 
–  ...no advanced mathematics required 

•  Stable... 
–  ...the basics have not changed much in the last thirty years 



Algebraists use the words group, ring, and field in technical ways, 
while entomologists have precise definitions for common words like 

bug and fly. Although it can be slightly confusing to overload 
ordinary words like this, it's usually better than the alternative, which 
is to invent new words. So most specialized fields of study make the 

same choice, adding crisp, rigorous definitions for words whose 
common meaning is fuzzy and intuitive. 

 
The study of formal language is no exception. We use crisp, rigorous 
definitions for basic terms such as alphabet, string, and language. 



Outline 

•  1.1 Alphabets 
•  1.2 Strings 
•  1.3 Languages 



Alphabets 

•  An alphabet is any finite set of symbols 
–  {0,1}: binary alphabet 
–  {0,1,2,3,4,5,6,7,8,9}: decimal alphabet  
–  ASCII, Unicode: machine-text alphabets 
–  Or just {a,b}: enough for many examples 
–  {}: a legal but not usually interesting alphabet 

•  We will usually use Σ as the name of the 
alphabet we’re considering, as in Σ = {a,b} 



Alphabets Uninterpreted 

•  Informally, we often describe languages 
interpretively  
–  “the set of even binary numbers” 

•  But our goal is to describe them rigorously, 
and that means avoiding interpretations 
–    “the set of strings of 0s and 1s that end in 0” 

•  We don’t define what a symbol is, and we 
don’t ascribe meaning to symbols 
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Strings 

•  A string is a finite sequence of zero or 
more symbols 

•  Length of a string: |abbb| = 4 
•  A string over the alphabet Σ means 

a string all of whose symbols are in Σ 
– The set of all strings of length 2 over the 

alphabet {a,b} is {aa, ab, ba, bb}  



Empty String 

•  The empty string is written as ε 
•  Like "" in some programming 

languages 
•  |ε| = 0 
•  Don't confuse empty set and empty 

string: 
–  {} ≠ ε 
–  {} ≠ {ε} 



Symbols And Variables 
•  Sometimes we will use variables that stand for 

strings: x = abbb 
•  In programming languages, syntax helps distinguish 

symbols from variables 
–  String x = "abbb"; 

•  In formal language, we rely on context and naming 
conventions to tell them apart 

•  We'll use the first letters, like a, b, and c, as symbols 
•  The last few, like x, y, and z, will be string variables 



Concatenation 

•  The concatenation of two strings x and 
y is the string containing all the symbols 
of x in order, followed by all the symbols 
of y in order 

•  We show concatenation just by writing 
the strings next to each other 

•  If x = abc and y = def, then xy = abcdef 
•  For any x, εx = xε = x 



Numbers 

•  We use N to denote the set of natural 
numbers: N = {0, 1, …} 



Exponents 
•  Exponent n concatenates a string with itself n 

times 
–  If x = ab, then 

•  x0 = ε 
•  x1 = x = ab 
•  x2 = xx = abab, etc. 

–  We use parentheses for grouping exponentiations 
(assuming that Σ does not contain the 
parentheses) 

•  (ab)7  = ababababababab 
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Languages 

•  A language is a set of strings over some fixed 
alphabet 

•  Not restricted to finite sets: in fact, finite sets 
are not usually interesting languages 

•  All our alphabets are finite, and all our strings 
are finite, but most of the languages we're 
interested in are infinite 



Kleene Star 

•  The Kleene closure of an alphabet Σ, written 
as Σ*, is the language of all strings over Σ 
–  {a}* is the set of all strings of zero or more as:  

{ε, a, aa, aaa, …}  
–  {a,b}* is the set of all strings of zero or more 

symbols, each of which is either a or b 
= {ε, a, b, aa, bb, ab, ba, aaa, …} 

–  x ∈ Σ* means x is a string over Σ 

•  Unless Σ = {}, Σ* is infinite 
•  If Σ = {} then what is Σ*? 



Set Formers 
•  A set written with extra constraints or 

conditions limiting the elements of the set: 

{x ∈ {a, b}* | |x| ≤ 2} = {ε, a, b, aa, bb, ab, ba} 

{xy | x ∈ {a, aa} and y ∈ {b, bb}} = {ab, abb, aab, aabb} 

{x ∈ {a, b}* | x contains one a and two bs} = {abb, bab, bba} 

{anbn | n ≥ 1} = {ab, aabb, aaabbb, aaaabbbb, ...} 



The Quest 

•  Using set formers to describe complex 
languages is challenging 

•  They can often be vague, ambiguous, 
or self-contradictory 

•  A big part of our quest in the study of 
formal language is to develop better 
tools for defining languages 


