
Chapter Two:
Finite Automata

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, !
abstract 'mathematical' machines or systems) and the computational problems that can be solved using !
these machines. These abstract machines are called automata. Automata comes from the !
Greek word αὐτόματα meaning "self-acting". !
 - Wikipedia!

Finite Automata

•  One way to define a language is to construct
an automaton
–  a kind of abstract computer that takes a string as

input and produces a yes-or-no answer.
•  The language it defines is the set of all strings

for which it says yes.

Finite Automata

•  The simplest kind of automaton is the finite
automaton.

•  The more complicated automata we discuss later
have some kind of unbounded memory to work with;
in effect, they will be able to grow to whatever size
necessary to handle the input string they are given.

•  finite automata have no such power.
–  A finite automaton has a finite memory that is fixed in

advance.
–  Whether the input string is long or short, complex or simple,

the finite automaton must reach its decision using the same
fixed and finite memory.

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

A Classic Riddle

•  A man travels with wolf, goat and cabbage
•  Wants to cross a river from east (E) to west

(W)
•  A rowboat is available, but only large enough

for the man plus one possession
•  Wolf eats goat if left alone together
•  Goat eats cabbage if left alone together
•  How can the man cross without loss?

Solutions As Strings

•  Four moves can be encoded as four symbols:
–  Man crosses with wolf (w)
–  Man crosses with goat (g)
–  Man crosses with cabbage (c)
–  Man crosses with nothing (n)

•  Then a sequence of moves is a string, such
as the solution gnwgcng:
–  First cross with goat, then cross back with nothing,

then cross with wolf, …

Moves As State Transitions

•  Each move takes our puzzle universe from one state
to another - a state is the configuration of occupants
on each side of the river.

•  For example, the g move is a transition between
these two states:

Transition Diagram
•  Showing all legal moves
•  All reachable states
•  Start state and goal state

The Language Of Solutions

•  Every path gives some x ∈ {w,g,c,n}*
•  The diagram defines the language of solutions to the

problem:

{x ∈ {w,g,c,n}* | starting in the start state and following the transitions of x ends up in the goal state}

•  Recall: A language is the set of all strings for which an
automaton says yes (ends up in the goal state).

•  This is an infinite language (why?)
•  The two shortest strings (solutions) in the language are

gnwgcng and gncgwng

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

What happens if we try a string
that is not in the language?

Consider gnwn…we get stuck
with nowhere to go.

Diagram Gets Stuck

•  On many strings that are not solutions, the
previous diagram gets stuck

•  Automata that never get stuck are easier to
work with

•  We'll need one additional state to use when
an error has been found in a solution

Complete Specification

•  The diagram shows exactly one transition
from every state on every symbol in Σ

•  It gives a computational procedure for
deciding whether a given string is a solution:
–  Start in the start state
–  Make one transition for each symbol in the string
–  If you end in the goal state, accept; if not, reject

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

DFA:
Deterministic Finite Automaton

•  An informal definition (formal version later):
–  A diagram with a finite number of states

represented by circles
–  An arrow points to one of the states, the unique

start state
–  Double circles mark any number of the states as

accepting states
–  For every state, for every symbol in Σ, there is

exactly one arrow labeled with that symbol going
to another state (or back to the same state)

DFAs Define Languages

•  Given any string over Σ, a DFA can read the
string and follow its state-to-state transitions

•  At the end of the string, if it is in an accepting
state, we say it accepts the string

•  Otherwise it rejects
•  The language defined by a DFA is the set of

strings in Σ* that it accepts

Example

•  This DFA defines {xa | x ∈ {a,b}*}
•  No labels on states (unlike man-wolf-goat-cabbage)
•  Labels can be added, but they have no effect, like

program comments:

last
symbol

seen was
not a

last
symbol

seen was a

b

a

a

b

Consider the Strings:
- aba
- bab

A DFA Convention

•  We don't draw multiple arrows with the same
source and destination states:

•  Instead, we draw one arrow with a list of
symbols:

a

b

a, b

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

The 5-Tuple (Formal Definition)

•  Q is the set of states
–  Drawn as circles in the diagram
–  We often refer to individual states as qi
–  The definition requires at least one: q0, the start state

•  F is the set of all those in Q that are accepting states
–  Drawn as double circles in the diagram

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × Σ → Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

The 5-Tuple (Formal Definition)

•  δ is the transition function
–  A function δ(q,a) that takes the current state q and next input

symbol a, and returns the next state
–  Represents the same information as the arrows in the

diagram

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
 Q is the finite set of states
 Σ is the alphabet (that is, a finite set of symbols)
 δ ∈ (Q × Σ → Q) is the transition function
 q0 ∈ Q is the start state
 F ⊆ Q is the set of accepting states

Example:

•  This DFA defines {xa | x ∈ {a,b}*}
•  Formally, M = (Q, Σ, δ, q0, F), where

–  Q = {q0,q1}
–  Σ = {a,b}
–  F = {q1}
–  δ(q0,a) = q1, δ(q0,b) = q0, δ(q1,a) = q1, δ(q1,b) = q0

•  Names are conventional, but the order is what counts
in a tuple

•  We could just say M = ({q0,q1}, {a,b}, δ, q0, {q1})

q0 q1

b

a

a

b

Another DFA

•  What is the alphabet?
•  Informally describe the

language of this DFA
•  Write down the formal

definition of this DFA.

More DFAs

For each of these DFAs:
•  What is the alphabet?
•  Informally describe the

language of this DFA
•  Write down the formal

definition of this DFA.

a)

b)

Languages

•  For each of the following languages construct a
DFA that recognizes it:
–  {x ∈ {a, b}* | |x| ≤ 2}
–  {x ∈ {a, b}* | x is a string with 0 or more a’s followed by 0 or more b’s}
–  {x ∈ {a, b}* | x contains one a and two bs}

Outline

•  2.1 Man Wolf Goat Cabbage
•  2.2 Not Getting Stuck
•  2.3 Deterministic Finite Automata
•  2.4 The 5-Tuple
•  2.5 The Language Accepted by a DFA

The δ* Function

•  The δ function gives 1-symbol moves
•  We'll define δ* so it gives whole-string results (by applying zero

or more δ moves)
•  A recursive definition:

–  δ*(q,ε) = q
–  δ*(q,xa) = δ(δ*(q,x),a)

•  That is:
–  For the empty string, no moves
–  For any string xa (x is any string and a is any final symbol) first

make the moves on x, then one final move on a

M Accepts x

•  Now δ*(q,x) is the state M ends up in, starting
from state q and reading all of string x

•  So δ*(q0,x) tells us whether M accepts x:

A string x ∈ Σ* is accepted by a DFA M = (Q, Σ, δ, q0, F)
if and only if δ*(q0, x) ∈ F.

A regular language is one that is L(M) for some
DFA M.

For any DFA M = (Q, Σ, δ, q0, F), L(M) denotes
the language accepted by M, which is
L(M) = {x ∈ Σ* | δ*(q0, x) ∈ F}.

Regular Languages

•  To show that a language is regular, give a DFA for it; we'll see
additional ways later

•  To show that a language is not regular we have to show that it is
not possible to construct a DFA for it (this is typically much more
difficult - we'll see a proof technique for this later)

Are these Languages Regular?

•  {(ab)n | n > 0}
•  {ambn | m,n > 0}
•  {anbn | n > 0}

Assignment #1

•  Chapter 1:
–  exercise 1 parts a,c,d;

•  Chapter 2:
–  exercise 2 parts a through e;
–  exercise 3 parts a,c;
–  exercise 4 parts a,c;
–  exercise 5 part a
–  exercise 6 part c

•  Due Monday Feb 3rd in class.

