
Chapter Two: 
Finite Automata 

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, !
abstract 'mathematical' machines or systems) and the computational problems that can be solved using !
these machines. These abstract machines are called automata. Automata comes from the !
Greek word αὐτόματα meaning "self-acting".  !
 - Wikipedia!



Finite Automata 

•  One way to define a language is to construct 
an automaton  
–  a kind of abstract computer that takes a string as 

input and produces a yes-or-no answer.  
•  The language it defines is the set of all strings 

for which it says yes.  



Finite Automata 

•  The simplest kind of automaton is the finite 
automaton.  

•  The more complicated automata we discuss later 
have some kind of unbounded memory to work with; 
in effect, they will be able to grow to whatever size 
necessary to handle the input string they are given.  

•  finite automata have no such power.  
–  A finite automaton has a finite memory that is fixed in 

advance.  
–  Whether the input string is long or short, complex or simple, 

the finite automaton must reach its decision using the same 
fixed and finite memory. 
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A Classic Riddle 

•  A man travels with wolf, goat and cabbage 
•  Wants to cross a river from east (E) to west 

(W) 
•  A rowboat is available, but only large enough 

for the man plus one possession 
•  Wolf eats goat if left alone together 
•  Goat eats cabbage if left alone together 
•  How can the man cross without loss? 



Solutions As Strings 

•  Four moves can be encoded as four symbols: 
–  Man crosses with wolf (w) 
–  Man crosses with goat (g) 
–  Man crosses with cabbage (c) 
–  Man crosses with nothing (n) 

•  Then a sequence of moves is a string, such 
as the solution gnwgcng: 
–  First cross with goat, then cross back with nothing, 

then cross with wolf, … 



Moves As State Transitions 

•  Each move takes our puzzle universe from one state 
to another - a state is the configuration of occupants 
on each side of the river. 

•  For example, the g move is a transition between 
these two states: 



Transition Diagram 
•  Showing all legal moves 
•  All reachable states 
•  Start state and goal state 



The Language Of Solutions 

•  Every path gives some x ∈ {w,g,c,n}* 
•  The diagram defines the language of solutions to the 

problem:  
 
{x ∈ {w,g,c,n}* |  starting in the start state and following the transitions of x ends up in the goal state} 
 
 

•  Recall:  A language is the set of all strings for which an 
automaton says yes (ends up in the goal state).  

•  This is an infinite language (why?) 
•  The two shortest strings (solutions) in the language are 

gnwgcng and gncgwng 
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What happens if we try a string 
that is not in the language? 
 
Consider gnwn…we get stuck 
with nowhere to go. 



Diagram Gets Stuck 

•  On many strings that are not solutions, the 
previous diagram gets stuck 

•  Automata that never get stuck are easier to 
work with 

•  We'll need one additional state to use when 
an error has been found in a solution 





Complete Specification 

•  The diagram shows exactly one transition 
from every state on every symbol in Σ 

•  It gives a computational procedure for 
deciding whether a given string is a solution: 
–  Start in the start state 
–  Make one transition for each symbol in the string 
–  If you end in the goal state, accept; if not, reject 
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DFA:  
Deterministic Finite Automaton 

•  An informal definition (formal version later): 
–  A diagram with a finite number of states 

represented by circles 
–  An arrow points to one of the states, the unique 

start state 
–  Double circles mark any number of the states as 

accepting states 
–  For every state, for every symbol in Σ, there is 

exactly one arrow labeled with that symbol going 
to another state (or back to the same state) 



DFAs Define Languages 

•  Given any string over Σ, a DFA can read the 
string and follow its state-to-state transitions 

•  At the end of the string, if it is in an accepting 
state, we say it accepts the string 

•  Otherwise it rejects 
•  The language defined by a DFA is the set of 

strings in Σ* that it accepts 



Example 

•  This DFA defines {xa | x ∈ {a,b}*} 
•  No labels on states (unlike man-wolf-goat-cabbage) 
•  Labels can be added, but they have no effect, like 

program comments: 
 

last  
symbol 

seen was 
not a 

last 
symbol 

seen was a 

b 

a 

a 

b 

Consider the Strings: 
- aba 
- bab 



A DFA Convention 

•  We don't draw multiple arrows with the same 
source and destination states: 
 
 
 

•  Instead, we draw one arrow with a list of 
symbols: 

 

  
a 

b 

 
  

a, b 
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The 5-Tuple (Formal Definition) 

•  Q is the set of states 
–  Drawn as circles in the diagram 
–  We often refer to individual states as qi 
–  The definition requires at least one: q0, the start state 

•  F is the set of all those in Q that are accepting states 
–  Drawn as double circles in the diagram 

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where: 
 Q is the finite set of states 
 Σ is the alphabet (that is, a finite set of symbols) 
 δ ∈ (Q × Σ → Q) is the transition function 
 q0 ∈ Q is the start state 
 F ⊆ Q is the set of accepting states 



The 5-Tuple (Formal Definition) 

•  δ is the transition function 
–  A function δ(q,a) that takes the current state q and next input 

symbol a, and returns the next state 
–  Represents the same information as the arrows in the 

diagram 

A DFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where: 
 Q is the finite set of states 
 Σ is the alphabet (that is, a finite set of symbols) 
 δ ∈ (Q × Σ → Q) is the transition function 
 q0 ∈ Q is the start state 
 F ⊆ Q is the set of accepting states 



Example: 

•  This DFA defines {xa | x ∈ {a,b}*} 
•  Formally, M = (Q, Σ, δ, q0, F), where 

–  Q = {q0,q1} 
–  Σ = {a,b} 
–  F = {q1} 
–  δ(q0,a) = q1, δ(q0,b) = q0, δ(q1,a) = q1, δ(q1,b) = q0 

•  Names are conventional, but the order is what counts 
in a tuple  

•  We could just say M = ({q0,q1}, {a,b}, δ, q0, {q1}) 

 

q0 q1 
 

b 

a 

a 

b 



Another DFA 

•  What is the alphabet? 
•  Informally describe the 

language of this DFA 
•  Write down the formal 

definition of this DFA. 



More DFAs 

For each of these DFAs: 
•  What is the alphabet? 
•  Informally describe the 

language of this DFA 
•  Write down the formal 

definition of this DFA. 

a) 

b) 



Languages 

•  For each of the following languages construct a 
DFA that recognizes it: 
–  {x ∈ {a, b}* | |x| ≤ 2} 
–  {x ∈ {a, b}* | x is a string with 0 or more a’s followed by 0 or more b’s} 
–  {x ∈ {a, b}* | x contains one a and two bs} 
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The δ* Function 

•  The δ function gives 1-symbol moves 
•  We'll define δ* so it gives whole-string results (by applying zero 

or more δ moves) 
•  A recursive definition: 

–  δ*(q,ε) = q 
–  δ*(q,xa) = δ(δ*(q,x),a) 

•  That is: 
–  For the empty string, no moves 
–  For any string xa (x is any string and a is any final symbol) first 

make the moves on x, then one final move on a 



M Accepts x 

•  Now δ*(q,x) is the state M ends up in, starting 
from state q and reading all of string x 

•  So δ*(q0,x) tells us whether M accepts x: 

A string x ∈ Σ* is accepted by a DFA M = (Q, Σ, δ, q0, F) 
if and only if δ*(q0, x) ∈ F. 



A regular language is one that is L(M) for some 
DFA M. 

For any DFA M = (Q, Σ, δ, q0, F), L(M) denotes 
the language accepted by M, which is  
L(M) = {x ∈ Σ* |  δ*(q0, x) ∈ F}. 

Regular Languages 

•  To show that a language is regular, give a DFA for it; we'll see 
additional ways later 

•  To show that a language is not regular we have to show that it is 
not possible to construct a DFA for it (this is typically much more 
difficult - we'll see a proof technique for this later) 



Are these Languages Regular? 

•  {(ab)n | n > 0} 
•  {ambn | m,n > 0} 
•  {anbn | n > 0} 



Assignment #1 

•  Chapter 1:  
–  exercise 1 parts a,c,d; 

•  Chapter 2:  
–  exercise 2 parts a through e;  
–  exercise 3 parts a,c;  
–  exercise 4 parts a,c;  
–  exercise 5 part a 
–  exercise 6 part c 

•  Due Monday Feb 3rd in class. 


