Chapter Three: Closure Properties for
 Regular Languages

Closure Properties

- Once we have defined languages formally, we can consider combinations and modifications of those languages:
- unions, intersections, complements, and so on.
- Such combinations and modifications raise important questions.
- For example, is the intersection of two regular languages also regular-capable of being recognized directly by some DFA?

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Complement

- For any language L over an alphabet Σ, the complement of L is

$$
\bar{L}=\left\{x \in \Sigma^{*} \mid x \notin L\right\}
$$

- Example:

$$
\begin{aligned}
& L=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=\text { strings that start with } 0 \\
& \bar{L}=\left\{1 x \mid x \in\{0,1\}^{*}\right\} \cup\{\varepsilon\}=\text { strings that don't start with } 0
\end{aligned}
$$

- Given a DFA for any language, it is easy to construct a DFA for its complement

Example

$$
\begin{aligned}
& L=\left\{0 x \mid x \in\{0,1\}^{*}\right\}
\end{aligned}
$$

Reverse Accepting and Non-Accepting States!

$$
\bar{L}=\left\{1 x \mid x \in\{0,1\}^{*}\right\} \cup\{\varepsilon\}
$$

Complementing a DFA

- All we did was to make the accepting states be non-accepting, and make the nonaccepting states be accepting
- In terms of the 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, all we did was to replace F with $Q-F$
- Using this construction, we have a proof that the complement of any regular language is another regular language

Theorem 3.1

The complement of any regular language is a regular language.

- Let L be any regular language
- By definition there must be some DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L(M)=L$
- Define a new DFA $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$
- This has the same transition function δ as M, but for any string $x \in \Sigma^{*}$ it accepts x if and only if M rejects x
- Thus $L\left(M^{\prime}\right)$ is the complement of L
- Because there is a DFA for it, we conclude that the complement of L is regular

Closure Properties

- A shorter way of saying that theorem: the regular languages are closed under complement
- The complement operation cannot take us out of the class of regular languages
- Closure properties are useful shortcuts: they let you conclude a language is regular without actually constructing a DFA for it

Proofs using the Complement

- Show that the following language is regular:

$$
L=\left\{x \in\{a, b\}^{*} \mid x \text { does not contain the string } a b b\right\}
$$

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Intersection

- $L_{1} \cap L_{2}=\left\{x \mid x \in L_{1}\right.$ and $\left.x \in L_{2}\right\}$
- Example:
$-L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
$-L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cap L_{2}=\left\{x \in\{0,1\}^{*} \mid x\right.$ starts and ends with 0$\}$
- Usually we will consider intersections of languages with the same alphabet, but it works either way
- Given two DFAs, it is possible to construct a DFA for the intersection of the two languages

Two DFAs

$$
L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}
$$

$$
L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}
$$

$M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$
$M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$
$L_{1}=L\left(M_{1}\right)$
$L_{2}=L\left(M_{2}\right)$

- We'll make a DFA that keeps track of the pair of states $\left(q_{i}, r_{j}\right)$ the two original DFAs are in
- Initially, they are both in their start states:

- Working from there, we keep track of the pair of states $\left(q_{i}, r_{j}\right)$:

- Eventually state-pairs repeat; then we're almost done:

- For intersection, both original DFAs must accept:

Cartesian Product

- In that construction, the states of the new DFA are pairs of states from the two originals
- That is, the state set of the new DFA is the Cartesian product of the two original sets:

$$
Q \times R=\{(q, r) \mid q \in Q \text { and } r \in R\}
$$

- The construct we just saw is called the product construction

Theorem 3.2

If L_{1} and L_{2} are any regular languages,
$L_{1} \cap L_{2}$ is also a regular language.

- Let L_{1} and L_{2} be any regular languages
- By definition there must be DFAs for them:
- $M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ with $L\left(M_{1}\right)=L_{1}$
- $M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$ with $L\left(M_{2}\right)=L_{2}$
- Define a new DFA $M_{3}=\left(Q \times R, \Sigma, \delta,\left(q_{0}, r_{0}\right), F_{1} \times F_{2}\right)$
- For δ, define it so that for all $q \in Q, r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right)$
- M_{3} accepts if and only if both M_{1} and M_{2} accept
- So $L\left(M_{3}\right)=L_{1} \cap L_{2}$, so that intersection is regular

Notes

- Formal construction assumed that the alphabets were the same
- It can easily be modified for differing alphabets
- The alphabet for the new DFA would be $\Sigma_{1} \cap \Sigma_{2}$
- Formal construction generated all pairs
- When we did it by hand, we generated only those pairs actually reachable from the start pair
- Makes no difference for the language accepted
- The formal construction will just have a bunch of unreachable states in its set of states that have no impact on the language accepted by the machine.
- The new DFA runs both of the constituent DFAs simultaneously and accepts if and only if both DFAs accept.

Proofs using the Intersection

- Show that the following language is regular:
$L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains both the strings $a b b$ and $\left.b b a\right\}$

Outline

- 3.1 Closed Under Complement
- 3.2 Closed Under Intersection
- 3.3 Closed Under Union
- 3.4 DFA Proofs Using Induction

Language Union

- $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1}\right.$ or $x \in L_{2}$ (or both) $\}$
- Example:
- $L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
- $L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cup L_{2}=\left\{x \in\{0,1\}^{*} \mid x\right.$ starts with 0 or ends with 0 (or both) $\}$
- Usually we will consider unions of languages with the same alphabet, but it works either way

Two DFAs

$$
\begin{array}{ll}
L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\} & L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\} \\
M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right) & M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right) \\
L_{1}=L\left(M_{1}\right) & L_{2}=L\left(M_{2}\right)
\end{array}
$$

Theorem 3.3

If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also a regular language.

- Proof 1: using DeMorgan's laws
- Because the regular languages are closed for intersection and complement, we know they must also be closed for union:

$$
L_{1} \cup L_{2}=\overline{\overline{L_{1}} \cap \overline{L_{2}}}
$$

Theorem 3.3

If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also a regular language.

- Proof 2: by product construction
- Same as for intersection, but with different accepting states
- Accept where either (or both) of the original DFAs accept
- Accepting state set is $\left(F_{1} \times R\right) \cup\left(Q \times F_{2}\right)$
- Define a new DFA:

$$
M_{3}=\left(Q \times R, \Sigma, \delta,\left(q_{0}, r_{0}\right),\left(F_{1} \times R\right) \cup\left(Q \times F_{2}\right)\right)
$$

- For union, at least one original DFA must accept:

Proofs using the Union

- Show that the following language is regular:
$L=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains either the string $a b b$ or $b b a$ or both $\}$

Assignment

- Assignment \#2 - see website

