
Chapter 6: 
NFA Applications 



Implementing NFAs 

•  The problem with implementing NFAs is that, being 
nondeterministic, they define a more complex 
computational procedure for testing language 
membership.   

•  To implement an NFA we must give a computational 
procedure that can look at a string and decide 
whether the NFA has at least one sequence of legal 
transitions on that string leading to an accepting 
state.   

•  This seems to require searching through all legal 
sequences for the given input string—but how? 



Implementing NFAs 

•  One approach is to convert the NFA into a DFA and 
implement that instead.   

•  This NFA/DFA conversion is both useful and 
theoretically interesting: the fact that it is always 
possible shows that in spite of their extra flexibility, 
NFAs have exactly the same power as DFAs.  They 
can define exactly the regular languages. 
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From NFA To DFA 

•  For any NFA, there is a DFA that recognizes 
the same language 

•  Proof is by construction: a DFA that keeps 
track of the set of states the NFA might be in 

•  This is called the subset construction 
•  First, an example starting from this NFA: 

 

q0 
0,1 q2 

 

0,1 

q1 
 

1 



•  Initially, the set of states the NFA could be in 
is just {q0} 

•  So our DFA will keep track of that using a 
start state labeled {q0}: 
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•  Now suppose the set of states the NFA could 
be in is {q0}, and it reads a 0 

•  The set of possible states after reading the 0 
is {q0}, so we can show that transition: 
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•  Suppose the set of states the NFA could be in 
is {q0}, and it reads a 1 

•  The set of possible states after reading the 1 
is {q0,q1}, so we need another state: 
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•  From {q0,q1} on a 0, the next set of possible 
states is δ(q0,0) ∪ δ(q1,0) = {q0,q2} 

•  From {q0,q1} on a 1, the next set of possible 
states is δ(q0,1) ∪ δ(q1,1) = {q0,q1,q2} 

•  Adding these transitions and states, we get… 
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And So On 

•  The DFA construction continues  
•  Eventually, we find that no further states are 

generated 
•  That's because there are only finitely many 

possible sets of states: P(Q) 
•  In our example, we have already found all 

sets of states reachable from {q0}… 



 
q0 q1 

 

1 q2 
 

0,1 

0,1 

 

{q0} 
 

1 
0 {q0,q1} 

 

{q0,q2} 
 

{q0,q1,q2} 
 

0 

1 
0 

1 
1 

0 



Accepting States 

•  It only remains to choose the accepting states 
•  An NFA accepts x if its set of possible states 

after reading x includes at least one accepting 
state 

•  So our DFA should accept in all sets that 
contain at least one NFA accepting state 
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Some Exercises 
Convert the following NFAs into DFAs. 

a) b) 

c) 



Implementation Note 

•  The subset construction defined the DFA 
transition function by 
 
 

   for some set of states R. 
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δD R,a( ) = δN
* r ,a( )
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Start State Note 

•  In the subset construction, the start state for 
the new DFA is  
 
 

•  Often this is the same as qD = {qN}, as in our 
earlier example 

•  But the difference is important if there are  
ε-transitions from the NFA's start state 
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qD = δN
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Empty-Set State Note 

•  The empty set is a subset of every set 
•  So the full subset construction always 

produces a DFA state for {} 
•  This is reachable from the start state if there 

is some string x for which the NFA has no 
legal sequence of moves: δN*(qN,x) = {} 

•  For example, this NFA, with L(N) = {ε} 
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•  P({q0}) = { {}, {q0} } 
•  A 2-state DFA 
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Trap State Provided 

•  The subset construction always provides a 
state for {} 

•  And it is always the case that 
 
 
so the {} state always has transitions back to 
itself for every symbol a in the alphabet 

•  It is a non-accepting trap state 
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NFAs Are Exactly As Powerful As 
DFAs 

•  We want to show that NFAs and DFAs are 
equivalent. 

•  This means we want to show that for any 
NFA there is a DFA and for any DFA there is 
an NFA. 



Lemma 6.3 

Proof:  Every NFA N gives rise to an equivalent DFA D via the 
subset construction with L(N) = L(D).  Therefore L(N) is regular. 

If L(N) for some NFA N, then L(N) is 
a regular language. 



Lemma 6.4 

Proof: 
•  DFAs are just special NFAs that have never have a choice. 
•  To turn a DFA into an NFA all we have to do is modify the 

transition function from returning single states to sets of states: 
–  Let L be any regular language 
–  By definition there must be some DFA M = (Q, Σ, δ, q0, F) with L(M) = L 
–  Define a new NFA N = (Q, Σ, δ', q0, F), where δ'(q,a) = {δ(q,a)} for all q ∈ Q 

and a ∈ Σ, and δ'(q,ε) = {} for all q ∈ Q 
–  Now δ'*(q,x) = {δ*(q,x)}, for all q ∈ Q and x ∈ Σ*  
–  Thus L(N) = L(M) = L 

If L is any regular language, there is 
some NFA N for which L(N) = L. 



Theorem 6.4 

Proof: 
•  Follows immediately from the previous lemmas 

A language L is L(N) for some NFA N 
if and only if L is a regular language. 


