Chapter Seven: Regular Expressions
Regular Expressions

• We have seen that DFAs and NFAs have equal definitional power.
• It turns out that regular expressions also have exactly that same definitional power:
 – they can be used to define all the regular languages, and only the regular languages.
Outline

• 7.1 Regular Expressions, Formally Defined
• 7.2 Regular Expression Examples
• 7.3 For Every Regular Expression, a Regular Language
• 7.4 Regular Expressions and Structural Induction
• 7.5 For Every Regular Language, a Regular Expression
Regular Expression

• In order to define regular expressions we need to additional operators on languages:
 – Concatenation
 – Kleene closure
Concatenation of Languages

• The concatenation of two languages L_1 and L_2 is $L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$
• The set of all strings that can be constructed by concatenating a string from the first language with a string from the second
• For example, if $L_1 = \{a, b\}$ and $L_2 = \{c, d\}$ then $L_1L_2 = \{ac, ad, bc, bd\}$
Kleene Closure of a Language

- The Kleene closure of a language L is $L^* = \{x_1x_2 \ldots x_n \mid n \geq 0, \text{ with all } x_i \in L\}$
- The set of strings that can be formed by concatenating any number of strings, each of which is an element of L
- In L^*, each x_i may be a different element of L
- For example, $\{ab, cd\}^* = \{\varepsilon, ab, cd, abab, abcd, cdab, cdcd, ababab, \ldots\}$
- For all L, $\varepsilon \in L^*$
- For all L containing at least one string other than ε, L^* is infinite

Note: this is very similar to the set of all strings Σ^* over alphabet Σ. In fact, sometimes we talk about the Kleene closure of the alphabet.
Regular Expressions

• A regular expression is a string r that denotes a language $L(r)$ over some alphabet Σ

• Regular expressions make special use of the symbols ε, \emptyset, $+$, \ast, and parentheses

• We will assume that these special symbols are not included in Σ

• There are six kinds of regular expressions…
The Six Regular Expressions

The six kinds of regular expressions, and the languages they denote, are:

– Three kinds of *atomic* regular expressions:

 • Any symbol \(a \in \Sigma \), with \(L(a) = \{a\} \)
 • The special symbol \(\varepsilon \), with \(L(\varepsilon) = \{\varepsilon\} \)
 • The special symbol \(\emptyset \), with \(L(\emptyset) = \{\} \)

– Three kinds of *compound* regular expressions built from smaller regular expressions, here called \(r \), \(r_1 \), and \(r_2 \):

 • \((r_1 + r_2)\), with \(L(r_1 + r_2) = L(r_1) \cup L(r_2) \)
 • \((r_1 r_2)\), with \(L(r_1 r_2) = L(r_1)L(r_2) \)
 • \((r)^*\), with \(L((r)^*) = (L(r))^* \)

• The parentheses may be omitted, in which case * has highest precedence and + has lowest
Outline

- 7.1 Regular Expressions, Formally Defined
- 7.2 Regular Expression Examples
- 7.3 For Every Regular Expression, a Regular Language
- 7.4 Regular Expressions and Structural Induction
- 7.5 For Every Regular Language, a Regular Expression
• \(ab\) Denotes the language \{ab\}
• Our formal definition permits this because
 – \(a\) is an atomic regular expression denoting \{a\}
 – \(b\) is an atomic regular expression denoting \{b\}
 – Their concatenation \((ab)\) is a compound
 – Unnecessary parentheses can be omitted
• Thus any string \(x\) in \(\Sigma^*\) can be used by itself as a regular expression, denoting \{x\}
\(ab+c\)

- Denotes the language \(\{ab,c\}\)
- We omitted parentheses from the fully parenthesized form \(((ab)+c)\)
- The inner pair is unnecessary because + has lower precedence than concatenation
- Thus any finite language can be defined using a regular expression
- Just list the strings, separated by +

Hint: when you see a “+” in a RE just think “or”
ba^*

- Denotes the language $\{ba^n|n\geq0\}$: the set of strings consisting of b followed by zero or more as
- Not the same as $(ba)^*$, which denotes $\{(ba)^n|n\geq0\}$
- * has higher precedence than concatenation
- The Kleene star is the only way to define an infinite language using regular expressions
\[(a+b)^*\]

- Denotes \{a,b\}*: the whole language of strings over the alphabet \{a,b\}
- The parentheses are necessary here, because * has higher precedence than +
- Kleene closure does not distribute, that is,
 - \((a+b)^* \neq a^*+b^*\)
 - \(a^*+b^*\) denotes \{a\}* \(\cup\) \{b\}*
• Denotes \{
• There is no other way to denote the empty set with regular expressions
• That's all you should ever use \emptyset for
• It is not useful in compounds:
 - \(L(r\emptyset) = L(\emptyset r) = \{\}\)
 - \(L(r+\emptyset) = L(\emptyset + r) = L(r)\)
 - \(L(\emptyset^*) = \{\varepsilon\}\)
From Languages to RE

• Give the regular expressions for the following languages:
 – \{x \mid x \text{ is a string that starts with three } 0\text{s followed by arbitrary } 0\text{s and } 1\text{s and then ends with three } 0\text{s}\}
 – \{x \mid x \text{ is a string that starts with a } 0 \text{ followed by an arbitrary number of } 1\text{s and ends with a } 0 \text{ OR } x \text{ is a string that starts with a } 1 \text{ followed by an arbitrary number of } 0\text{s and ends with a } 1\}\}
 – \{ x^n \mid x \text{ is either the string } ab \text{ or the string } c \text{ and } n \geq 0 \}
Outline

• 7.1 Regular Expressions, Formally Defined
• 7.2 Regular Expression Examples
• 7.3 For Every Regular Expression, a Regular Language
• 7.4 Regular Expressions and Structural Induction
• 7.5 For Every Regular Language, a Regular Expression
Regular Expression to NFA

• Approach: convert any regular expression to an NFA for the same language
To make them easier to compose, our NFAs will all have the same standard form:
- Exactly one accepting state, not the start state
That is, for any regular expression r, we will show how to construct an NFA N with $L(N) = L(r)$, pictured like this:
Atomic REs

\[a \in \Sigma: \]

\[\varepsilon: \]

\[\emptyset: \]
Compound REs

where \(r_1 \) and \(r_2 \) are REs
Outline

• 7.1 Regular Expressions, Formally Defined
• 7.2 Regular Expression Examples
• 7.3 For Every Regular Expression, a Regular Language
• 7.4 Regular Expressions and Structural Induction
• 7.5 For Every Regular Language, a Regular Expression
NFA to Regular Expression

• There is a way to take any NFA and construct a regular expression for the same language
• This gives us our next lemma:
 • Lemma: if N is any NFA, there is some regular expression r with $L(r) = L(N)$
• A tricky construction, covered in Appendix A (very difficult to follow), the hand-out has a more intuitive proof.
Theorem (Kleene's Theorem)
A language is regular if and only if it is $L(r)$ for some regular expression r.

- Proof: follows from previous two lemmas.
Defining Regular Languages

• We can define the regular languages:
 – By DFA
 – By NFA
 – By regular expression

• These three have equal power for defining languages
Alphabets

• An *alphabet* is any finite set of symbols
 – \{0,1\}: binary alphabet
 – \{0,1,2,3,4,5,6,7,8,9\}: decimal alphabet
 – ASCII, Unicode: machine-text alphabets
 – Or just \{a,b\}: enough for many examples
 – {}: a legal but not usually interesting alphabet

• We will usually use \(\Sigma\) as the name of the alphabet we’re considering, as in \(\Sigma = \{a,b\}\)
Strings

- A string is a finite sequence of zero or more symbols
- Length of a string: \(|abbb| = 4 \)
- A string over the alphabet \(\Sigma \) means a string all of whose symbols are in \(\Sigma \)
 - The set of all strings of length 2 over the alphabet \(\{a,b\} \) is \(\{aa, ab, ba, bb\} \)
Languages

• A *language* is a set of strings over some fixed alphabet

• *Not* restricted to finite sets: in fact, finite sets are not usually interesting languages

• All our alphabets are finite, and all our strings are finite, but most of the languages we're interested in are infinite
The Quest

• Using set formers to describe complex languages is challenging
• They can often be vague, ambiguous, or self-contradictory
• A big part of our quest in the study of formal language is to develop better tools for defining and classifying languages
The Quest

• We went from this:
 – $\{x \mid x$ is a string that starts with three 0s followed by arbitrary 0s and 1s and then ends with three 0s$\}$

• to this:
 – $000(0+1)^*000$
The Quest

• We just defined a major class of languages:
 – the regular languages

• The hallmark of these languages is that their structure is such that simple computational models (DFA/NFA) can recognize them and that they can be defined using regular expressions.
The Quest

• The idea that the structure of languages is connected to computational models is important.

• Later on we see that the structure of languages is tightly coupled with idea of algorithms and classes of computational problems.