
Chapter Ten: 
Grammars 



Grammars 



Outline 

•  10.1 A Grammar Example for English 
•  10.2 The 4-Tuple 
•  10.3 The Language Generated by a Grammar 
•  10.4 Every Regular Language Has a 

Grammar 
•  10.5 Right-Linear Grammars 
•  10.6 Every Right-linear Grammar Generates 

a Regular Language 



A Little English 

•  An article can be the word a or the: 

 A → a 
A → the 

•  A noun can be the word dog, cat or rat: 
 N → dog 
N → cat 
N → rat 

A noun phrase is an article followed by a noun: 
 P → AN 



A Little English 

•  An verb can be the word loves, hates or eats: 
 V → loves 
V → hates 
V → eats 

A sentence can be a noun phrase, followed by a verb, followed 
by another noun phrase: 

 S → PVP 



The Little English Grammar 

•  Taken all together, a grammar G1 for a small subset 
of unpunctuated English: 

•  Each production says how to modify strings by 
substitution 

•  x → y says, substring x may be replaced by y 

S → PVP   A → a  
P → AN   A → the  
V → loves   N → dog  
V → hates   N → cat  
V → eats   N → rat 



•  Start from S and follow the productions of G1 
•  This can derive a variety of (unpunctuated) English sentences: 

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecateatsP ⇒ thecateatsAN 
 ⇒  thecateatsaN ⇒  thecateatsarat 

S ⇒ PVP ⇒ ANVP ⇒ aNVP ⇒ adogVP ⇒ adoglovesP ⇒ adoglovesAN 
 ⇒  adoglovestheN ⇒  adoglovesthecat 

S ⇒ PVP ⇒ ANVP ⇒ theNVP ⇒ thecatVP ⇒ thecathatesP ⇒ thecathatesAN 
 ⇒  thecathatestheN ⇒  thecathatesthedog 

S → PVP   A → a  
P → AN   A → the  
V → loves   N → dog  
V → hates   N → cat  
V → eats   N → rat 



•  Often there is more than one place in a string where a production could 
be applied 

•  For example, PlovesP: 
–  PlovesP ⇒ ANlovesP 
–  PlovesP ⇒ PlovesAN 

•  The derivations on the previous slide chose the leftmost substitution at 
every step, but that is not a requirement 

•  The language defined by a grammar is the set of lowercase strings that 
have at least one derivation from the start symbol S 

S → PVP   A → a  
P → AN   A → the  
V → loves   N → dog  
V → hates   N → cat  
V → eats   N → rat 



•  Often, a grammar contains more than one 
production with the same left-hand side 

•  Those productions can be written in a 
compressed form 

•  The grammar is not changed by this 
•  This example still has ten productions 

S → PVP  
P → AN    
V → loves | hates | eats 
A → a | the 
N → dog | cat | rat 



Informal Definition 

•  Productions define permissible string substitutions 
•  When a sequence of permissible substitutions 

starting from S ends in a string that is all lowercase, 
we say the grammar generates that string 

•  L(G) is the set of all strings generated by grammar G 

A grammar is a set of productions of the form x → y.  
The strings x and y can contain both lowercase and 
uppercase letters; x cannot be empty, but y can be ε.  
One uppercase letter is designated as the start 
symbol (conventionally, it is the letter S). 



•  That final production for X says that X may be replaced by the 
empty string, so that for example abbX ⇒ abb 

•  Written in the more compact way, this grammar is: 

S → aS | X 
X → bX |  ε	


S → aS 
S → X  
X → bX 
X →  ε  



S ⇒ aS ⇒ aX ⇒ a 

S ⇒ X ⇒ bX ⇒  b 

S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒  abb 

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaX ⇒   
 aaabX ⇒  aaabbX ⇒  aaabb 

S → aS | X 
X → bX | ε	




•  For this grammar, all derivations of lowercase 
strings follow this simple pattern: 
–  First use S → aS zero or more times 
–  Then use S → X once 
–  Then use X → bX zero or more times 
–  Then use X → ε once 

•  So the generated string always consists of 
zero or more as followed by zero or more bs 

•  L(G) = L(a*b*) 

S → aS | X 
X → bX |  ε  



Untapped Power 

•  All our examples have used productions with a single uppercase 
letter on the left-hand side 

•  Grammars can have any non-empty string on the left-hand side 
•  The mechanism of substitution is the same 

–  Sb → bS says that bS can be substituted for Sb 
•  Such productions  can be very powerful, but we won't need that 

power yet 
•  We'll concentrate on grammars with one uppercase letter on the 

left-hand side of every production 
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Formalizing Grammars 

•  Our informal definition relied on the difference 
between lowercase and uppercase 

•  The formal definition will use two separate alphabets: 
–  The terminal symbols (typically lowercase) 
–  The nonterminal symbols (typically uppercase) 

•  So a formal grammar has four parts… 



4-Tuple Definition 

•  A grammar G is a 4-tuple G = (V, Σ, S, P), where: 
–  V is an alphabet, the nonterminal alphabet 
–  Σ is another alphabet, the terminal alphabet, disjoint from V 

(includes ε) 
–  S ∈ V is the start symbol 
–  P is a finite set of productions, each of the form  

x → y, where x and y are strings over Σ ∪ V and  
x ≠ε 



Example 

•  Formally, this is G = (V, Σ, S, P), where: 
–  V = {S, X} 
–  Σ = {a, b} 
–  P = {S → aS, S → X, X → bX, X → ε} 

•  The order of the 4-tuple is what counts: 
–  G = ({S, X}, {a, b}, S, {S → aS, S → X, X → bX, X → ε}) 

S → aS | X 
X → bX |  ε  
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Computations in our models 

•  For DFAs, we derived a zero-or-more-step δ* 
function from the one-step δ 

•  For NFAs, we derived a one-step relation on 
IDs, then extended it to a zero-or-more-step 
relation 

•  We'll do the same kind of thing for 
grammars… 



w ⇒ z : One-Step Derivation 

•  Defined for a grammar G = (V, Σ, S, P) the symbol ⇒ 
is a relation on strings 

•  w ⇒ z ("w derives z") if and only if there exist strings 
u, x, y, and v over Σ ∪ V, with 
–  w = uxv 
–  z = uyv 
–  (x → y) ∈ P 

•  That is , w can be transformed into z using one of the 
substitutions permitted by G 



S → aS | X 
X → bX | ε	


S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb 
 

Example: 

•  S ⇒ aS with wxu ⇒ wyu where 
–  x = S 
–  y = aS 
–  w = u = ε	

–  (S → aS) in P 



w ⇒* z : n-Step Derivation  

•  A sequence of ⇒-related strings 
x0 ⇒ x1 ⇒  ... ⇒ xn, is an n-step derivation 

•  w ⇒* z if and only if there is a derivation of  
0 or more steps that starts with w and ends with z 

•  That is, w can be transformed into z using a 
sequence of zero or more of the substitutions 
permitted by G 



S → aS | X 
X → bX | ε	


S ⇒ aS ⇒ aX ⇒ abX ⇒ abbX ⇒ abb 
 

Example: 

•  S ⇒* abb with steps: 
–  S ⇒ aS 
–  aS ⇒ aX 
–  aX ⇒ abX	

–  abX ⇒ abbX 
–  abbX ⇒ abb 



L(G) 

•  The language generated by a grammar G is  
L(G) = {x ∈ Σ* | S ⇒* x} 

•  That is, the set of terminal strings derivable from the 
start symbol 

•  Notice the restriction x ∈ Σ*: 
–  The intermediate strings in a derivation can use both  
Σ and V 

–  But only the terminal strings are in L(G) 
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NFA to Grammar 

•  To show that there is a grammar for every 
regular language, we will show how to 
convert any NFA into an equivalent grammar 

•  That is, given an NFA M, construct a 
grammar G with L(M) = L(G) 

•  First, an example… 



Example: 

•  The grammar we will construct generates L(M) 
•  In fact, its derivations will mimic what M does 
•  For each state, our grammar will have a nonterminal symbol (S, 

R and T) 
•  The start state will be the grammar's start symbol 
•  The grammar will have one production for each transition of the 

NFA, and one for each accepting state 

 

S R 
 

b 

c 

T 
 

ε 

a 



Example: 

•  For each possible transition Y ∈ δ(X,z) in the 
NFA, our grammar has a production X → zY 

•  That gives us these four to start with: 
Transition of M Production in G  
(S,a) = {S }  S → aS  
(S,b) = {R }  S → bR  
(R,c) = {R} R  →  cR  
(R, ) = {T }  R  →  T  

 

 

S R 
 

b 

c 

T 
 

ε 

a 



Example: 

•  In addition, for each accepting state in the 
NFA, our grammar has an ε-production 

•  That adds one more: 
Accepting state of M Production in G  
T  T →  

 

 

S R 
 

b 

c 

T 
 

ε 

a 



Example: 

•  The complete grammar has one production 
for each transition, and one for each 
accepting state: 

 

S R 
 

b 

c 

T 
 

ε 

a 

S → aS 
S → bR 
R → cR 
R → T 
T → ε 



•  Compare the behavior of M as it accepts abc with the 
behavior of G as it generates abc: 

•  Every time the NFA reads a symbol, the grammar 
generates that symbol 

(S,abc )    

€ 

 (S,bc )    

€ 

 (R ,c )   

€ 

 (R, )    

€ 

 (T, )    
S  ⇒  a S  ⇒  abR  ⇒  abcR  ⇒  abcT  ⇒  abc  

 

 

S R 
 

b 

c 

T 
 

ε 

a S → aS 
S → bR 
R → cR 
R → T 
T → ε 



Theorem 10.4 

•  Proof is by construction; let M = (Q, Σ, δ, S, F) be any NFA 
•  Construct G = (Q, Σ, S, P) 

–  Q, Σ, and S are the same as for M 
–  P is constructed from δ and F: 

•  Wherever M has Y ∈ δ(X,z), P contains X → zY 
•  And for each X ∈ F, P contains X → ε 

•  Now G has X → zY whenever Y ∈ δ(X,z) and Y → ε whenever M  
has Y ∈ F 

•  So for all strings z ∈ Σ*, δ*(S,z) contains at least one element of F if 
and only if S ⇒* z 

•  Therefore, L(M) = L(G) 

Every regular language is generated by some grammar. 



The Converse is NOT true 

•  The Theorem “Every grammar generates a 
regular language” is not true. 

•  We can easily show this by an example of a 
grammar that does not generate a regular 
language:  

S → aSb 
S → ε 

L(G) = { anbn | n ≥ 0 } 
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Single-Step Grammars 

•  A grammar G = (V, Σ, S, P) is single step if and only if every 
production in P is in one of these three forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ: 
–  X → zY 
–  X → Y (think of this as the rule X → εY) 
–  X → ε 

•  Given any single-step grammar, we could run the previous 
construction backwards, building an equivalent NFA… 



Reverse Example 

•  This grammar generates L(ab*a): 
•  All its productions are of the kinds 

built in our construction 
•  Running the construction backwards, we get three 

states S, R, and T 
•  The first three productions give us the three arrows, 

and the fourth makes T accepting: 

S → aR 
R → bR 
R → aT 
T → ε 

 

S R 
 

a 

b 

T 
 

a 



Production Massage 

•  Even if all the productions are not of the 
required form, it is sometimes possible to 
massage them until they are 

•  S → abR does not have the right form: 
–  Equivalent productions S → aX and X → bR do 

•  R → a does not have the right form: 
–  Equivalent productions R → aY and Y → ε do 

•  After those changes we can run the 
construction backwards… 

S → abR 
R → a 



Massaged Reverse Example 
S → abR 
R → a 

S → aX 
X → bR 
R → aY 
Y → ε 

 
S R 

 

a Y 
 

a X 
 

b 



Right-Linear Grammars 

•  A grammar G = (V, Σ, S, P) is right linear if and only if every 
production in P is in one of these two forms, where X ∈ V,  
Y ∈ V, and z ∈ Σ*: 
–  X → zY, or 
–  X → z 

•  So every production has: 
–  A single nonterminal on the left 
–  At most one nonterminal on the right, and only as the rightmost 

symbol 
•  Note that this includes all single-step grammars 
•  This special form makes it easy to massage the productions and 

then transform them into NFAs 



Lemma 10.5 

•  Proof is by construction 
•  Let G = (V, Σ, S, P) be any right-linear grammar 
•  Each production is X → z1...znω, where zi∈Σ and ω ∈ V or ω = ε 
•  For each such production, let P contains  

these n+1 productions, where each Ki 
is a new nonterminal symbol: 

•  Now let G = (V', Σ, S, P'), where V' is 
the set of nonterminals used in P' 

•  Any step of a derivation G is equivalent 
to the corresponding n+1 steps in G' 

•  The reverse is true for derivations of terminal strings in G' 
•  So L(G) = L(G') 

Every right-linear grammar G is equivalent to 
some single-step grammar G'. 

X → z1K1 
K1 → z2K2 
… 
Kn-1 → zn Kn	


Kn → ω  



Example 

S → abS 
S → a 

S → aK1 
K1 → bK2 
K2 → S 
S → a 
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Theorem 10.6 

•  Proof is by construction 
•  Use Lemma 10.5 to get single-step form, then use the reverse 

of the construction from Theorem 10.4 

For every right-linear grammar G, L(G) is regular. 



Example 
S → abS 
S → a 

S 

K1 

Y 

a 

a 

S → aK1 
K1 → bK2 
K2 → S 
S → a 

S → aK1 
K1 → bK2 
K2 → S 
S → aY 
Y → ε 

K2 

b 

ε 



Left-Linear Grammars 

•  A grammar G = (V, Σ, S, P) is left linear if and only if 
every production in P is in one of these two forms, 
where X ∈ V, Y ∈ V, and z ∈ Σ*: 
–  X → Yz, or 
–  X → z 

•  This parallels the definition of right-linear 
•  With a little more work, one can show that the 

language generated is also always regular 



Regular Grammars,  
Regular Languages 

•  Grammars that are either left-linear or right-linear are 
called regular grammars 

•  A simple inspection tells you whether G is a regular 
grammar; if it is, L(G) is a regular language 

•  Note that if G is not a regular grammar, that tells you 
nothing: L(G) might still be regular language 

•  This example is not right-linear and not left-linear, but 
L(G) is the regular language L((aaa)*): 

S → aSaa | ε 



The Next Big Question 

•  We know that all regular grammars generate 
regular languages 

•  We've seen a non-regular grammar that still 
generates a regular language 

•  So are there any grammars that generate 
languages that are not regular? 

•  For that matter, do any non-regular 
languages exist? 

•  Answers to these in the next chapter 


