Chapter Eleven: Non-Regular Languages

Non-Regular Languages

- We have seen regular languages defined by different formalisms:
 - languages that can be recognized by a DFA.
 - languages that can be recognized by an NFA.
 - languages that can be denoted by a regular expression.
 - languages that can be generated by a right-linear grammar.
- You might begin to wonder: are there any languages that are not regular?

Non-Regular Languages

- In this chapter, we will see that there are.
- There is a proof tool that is often used to prove languages non-regular:
 - the pumping lemma

Outline

- 11.1 The Language {aⁿbⁿ}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

The Language {*aⁿbⁿ*}

- Any number of *a*s followed by the same number of *b*s
- Easy to give a grammar for this language:

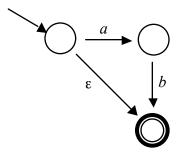
$S \rightarrow aSb \mid \varepsilon$

- All derivations of a fully terminal string use the first production 0 or more times, then the last production once: $a^n b^n$ with $n \ge 0$.
- Is it a regular language? For example, is there an NFA for it?

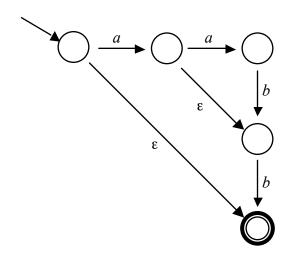
Trying To Build An NFA

- We'll try working up to it
- The subset $\{a^nb^n \mid n = 0\}$:

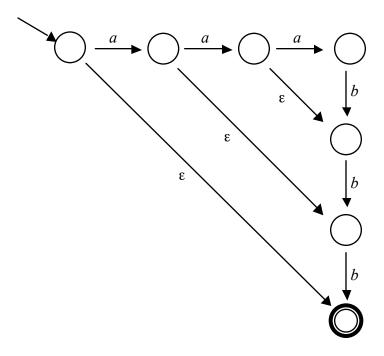
• The subset $\{a^n b^n \mid n \le 1\}$:



The Subset $\{a^n b^n \mid n \le 2\}$



The Subset $\{a^nb^n \mid n \le 3\}$



A Futile Effort

- For each larger value of *n* we added two more states
- We're using the states to count the *a*s, then to check that the same number of *b*s follow
- That's not going to be a successful pattern on which to build an NFA for all of {aⁿbⁿ} with n unbounded...
 - NFA needs a fixed, finite number of states
 - No fixed, finite number will be enough to count the *unbounded* n in $\{a^nb^n\}$
- This is *not* a proof that no NFA can be constructed
- But it does contain the germ of an idea for a proof...

Theorem 11.1

The language $\{a^n b^n\}$ is not regular.

Proof:

- Let $M = (Q, \{a, b\}, \delta, q_0, F)$ be any DFA over the alphabet $\{a, b\}$; we'll show that $L(M) \neq \{a^n b^n\}$
 - that is L(M) cannot be $\{a^n b^n\}$ regardless of how clever we build the DFA
- Given a string s of as with $|s| \ge |Q|$ for input, then M visits a sequence of states:
 - $\delta^*(q_0,\varepsilon)$, then $\delta^*(q_0,a)$, then $\delta^*(q_0,aa)$, and so on
- Since Q is finite and $|s| \ge |Q|$, M eventually revisits one:
 - $\exists k \text{ and } l \text{ with } k < l \text{ such that } \delta^*(q_0, a^k) = \delta^*(q_0, a^l)$
- Now, append b', and we see that $\delta^*(q_0, a^k b') = \delta^*(q_0, a' b')$
- So *M* either accepts both $a^k b^l$ and $a^l b^l$, or rejects both
 - if M rejects $a^{l}b^{l}$ then there is nothing to prove because $L(M) \neq \{a^{n}b^{n}\}$ trivially
 - if M accepts a'b' then $a'b' \in L(M)$ and $a^kb' \in L(M)$
- However, $\{a^n b^n\}$ contains $a^l b^l$ but not $a^k b^l$, so $L(M) \neq \{a^n b^n\}$
- So no DFA has $L(M) = \{a^n b^n\}$. Therefore $\{a^n b^n\}$ is not regular

A Word About That Proof

- Nothing was assumed about the DFA M, except its alphabet {a,b}
- In spite of that, we were able to infer quite a lot about its behavior
- The basic insight: with a sufficiently long string we can force any DFA to repeat a state
- That's the basis of a wide variety of nonregularity proofs

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Key Insight

- We've shown that the language {aⁿbⁿ} is nonregular
- The key idea was to choose a string long enough to make any given DFA repeat a state
- For both those proofs we just used strings of as, and showed that $\exists k$ and / with k < l such that $\delta^*(q_0, a^k) = \delta^*(q_0, a^l)$

Multiple Repetitions

- When you've found a state that repeats once, you can make it repeat again and again
- For example, our $\delta^*(q_0, a^k) = \delta^*(q_0, a^l)$:
 - Let *r* be the state in question: $r = \delta^*(q_0, a^k)$
 - After *I-k* more as it repeats: $r = \delta^*(q_0, a^{k+(I-k)})$
 - That little substring a^(l-k) takes it from state r back to state r

$$- r = \delta^*(q_0, a^k) \\ = \delta^*(q_0, a^{k+(l-k)}) \\ = \delta^*(q_0, a^{k+2(l-k)}) \\ = \delta^*(q_0, a^{k+3(l-k)})$$

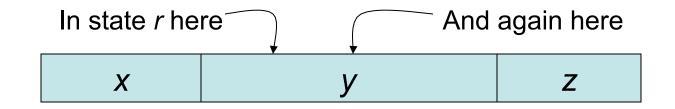
Pumping

- We say that the substring a^(l-k) can be pumped any number of times, and the DFA always ends up in the same state
- All regular languages have an important property involving pumping
- Any sufficiently long string in a regular language must contain a pumpable substring
- Formally, the pumping lemma...

Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

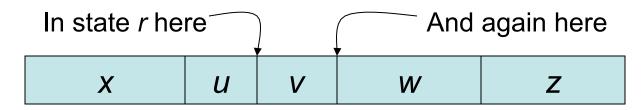
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose *k* = |*Q*|
- Consider any x, y, and z with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
 - We know such a state exists because we have $|y| \ge |Q| \dots$



Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose *k* = |*Q*|
- Consider any x, y, and z with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
- Choose uvw = y so that $\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r$
- Now v is pumpable: for all $i \ge 0$, $\delta^*(q_0, xuv^i) = r...$



Lemma 11.3: The Pumping Lemma for Regular Languages

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA with L(M) = L
- Choose k = |Q|
- Consider any *x*, *y*, and *z* with $xyz \in L$ and $|y| \ge k$
- Let *r* be a state that repeats during the *y* part of *xyz*
- Choose uvw = y so that $\delta^*(q_0, xu) = \delta^*(q_0, xuv) = r$
- Now v is pumpable: for all $i \ge 0$, $\delta^*(q_0, xuv^i) = r$
- Then for all $i \ge 0$, $\delta^*(q_0, xuv^iwz) = \delta^*(q_0, xuvwz) = \delta^*(q_0, xyz) \in F$
- Therefore, for all $i \ge 0$, $xuv^i wz \in L$

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Pumping-Lemma Proofs

- The pumping lemma is very useful for proving that languages are not regular
- For example, {*aⁿbⁿ*}...

{aⁿbⁿ} Is Not Regular

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{a^n b^n\}$ is regular, so the pumping lemma holds for *L*. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

 $x = a^k$ $y = b^k$ $z = \varepsilon$

Now $xyz = a^k b^k \in L$ and $|y| \ge k$ as required.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in L$.
- 4 Choose *i* = 2. Since *v* contains at least one *b* and nothing but *b*s, uv^2w has more *b*s than uvw. So xuv^2wz has more *b*s than *a*s, and so $xuv^2wz \notin L$.
- 5 By contradiction, $L = \{a^n b^n\}$ is not regular.

The Pattern

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $L = \{a^n b^n\}$ is regular, so the pumping lemma holds for *L*. Let *k* be as given by the pumping lemma.
- 2

Here, you choose *xyz* and show that they meet the requirements, $xyz \in L$ and $|y| \ge k$. Choose them so that pumping in the *y* part will lead to a contradiction, a string $\notin L$.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in L$.
- ⁴ Here, you choose i, the number of times to pump, and show that you have a contradiction: $xuv^iwz \notin L$.
- 5 By contradiction, $L = \{a^n b^n\}$ is not regular.

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

Proof Strategy

- It all comes down to those delicate choices:
 xyz and i
- Usually, there are a number of choices that successfully lead to a contradiction
- And, of course many others that fail
- For example: let $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$
- We'll try a pumping-lemma proof that A is not regular

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

x = aaa y = b z = aaa **?**

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

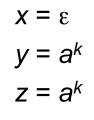
x = aaa y = b z = aaa

Bad choice. The pumping lemma requires $|y| \ge k$. It never applies to fixedsize examples. Since *k* is not known in advance, *y* must be some string that is constructed using *k*, such as a^k .

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^{k}$ $z = a^{k}$?

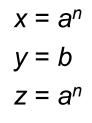
- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:



Bad choice. The pumping lemma lemma only applies if the string $xyz \in A$. That is not the case here.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:



This is ill-formed, since the value of n is not defined. At this point the only integer variable that is defined is k.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = a^{k}$$
$$y = b^{k+2}$$
$$z = a^{k}$$
?

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = a^{k}$$
$$y = b^{k+2}$$
$$z = a^{k}$$

This meets the requirements $xyz \in A$ and $|y| \ge k$, but it is a bad choice because it won't lead to a contradiction. Pumping within the string y will change the number of bs in the middle, but the resulting string can still be in A.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = a^{k}$$
$$y = bba^{k}$$
$$z = \varepsilon$$
?

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = a^k$$

$$y = bba^k$$

$$z = \varepsilon$$

This meets the requirements $xyz \in A$ and $y| \ge k$, but it is a bad choice because it won't lead to a contradiction. The pumping lemma can choose any uvw = ywith |v| > 0. If it chooses u=b, v=b, and $w = a^k$, there will be no contradiction, since for all $i \ge 0$, $xuv^iwz \in A$.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

x = a^kb y = a^k z = ε **?**

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

Good choice. It meets the requirements $xyz \in A$ and $|y| \ge k$, and it will lead to a contradiction because pumping anywhere in the *y* part will change the number of *a*s after the *b*, without changing the number before the *b*.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^{k}$ $z = ba^{k}$?

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = \varepsilon$$
$$y = a^k$$
$$z = ba^k$$

An equally good choice.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^k$ $z = ba^k$

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 4 Choose *i* = 1

?

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

$$x = \varepsilon$$
$$y = a^k$$
$$z = ba^k$$

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 4 Choose *i* = 1

Bad choice -- the only bad choice for *i* in this case! When i = 1, $xuv^iwz \in A$, so there is no contradiction.

- 1 Proof is by contradiction using the pumping lemma for regular languages. Assume that $A = \{a^n b^j a^n \mid n \ge 0, j \ge 1\}$ is regular. Let *k* be as given by the pumping lemma.
- 2 Choose *x*, *y*, and *z* as follows:

 $x = \varepsilon$ $y = a^k$ $z = ba^k$

Now $xyz = a^k ba^k \in A$ and $|y| \ge k$ as required.

- 3 Let *u*, *v*, and *w* be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in A$.
- 4 Choose *i* = 2. Since *v* contains at least one *a* and nothing but *a*s, uv^2w has more *a*s than uvw. So xuv^2wz has more *a*s before the *b* than after it, and thus $xuv^2wz \notin A$.
- 5 By contradiction, *A* is not regular.

Outline

- 11.1 The Language {*aⁿbⁿ*}
- 11.2 The Languages {*xx^R*}
- 11.3 Pumping
- 11.4 Pumping-Lemma Proofs
- 11.5 Strategies
- 11.6 Pumping And Finite Languages

What About Finite Languages?

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ with $|y| \ge k$, there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- The pumping lemma applies in a trivial way to any finite language *L*
- Choose k greater than the length of the longest string in L
- Then it is clearly true that "for all $xyz \in L$ with $|y| \ge k$, ..." since there are *no* strings in *L* with $|y| \ge k$
- It is vacuously true
- In fact, all finite languages are regular...

Theorems that hold "trivially"

• To see that the lemma holds trivially we need to take a look at the truth table for implication:

A	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	т
F	F	Т

NOTE: the last two cases are interesting, implication is true if the condition is false.

Rewriting the Pumping Lemma slightly

For all regular languages *L* there exists some integer *k* such that for all $xyz \in L$ if $|y| \ge k$, then there exist uvw = y with |v| > 0, such that for all $i \ge 0$, $xuv^iwz \in L$.

- If we pick k ≥ |Q| then the condition |y| ≥ k will always be false for finite languages.
- That means the consequent could be true of false, there might exist strings uvw=y with the required properties or not.
- Regardless, the implication is trivially true, because its condition is false.
- Therefore the lemma holds trivially.

Theorem 11.6

All finite languages are regular.

- Let A be any finite language of n strings:
 A = {x₁, ..., x_n}
- There is a regular expression that denotes this language: $A = L(x_1 + ... + x_n)$
- Or, in case n = 0, $A = L(\emptyset)$
- Since A is denoted by a regular expression, A is a regular language

What about Regular Languages in General?

- Remember:
 - we do NOT use the pumping lemma to prove a language regular.
 - we DO use NFA's/DFA's to prove languages regular.
 - This hold for finite as well as infinite language.

Problems

- Prove that L={xx^R | x∈Σ*} where Σ={a} is a regular language.
- Prove that L={xx | x∈Σ*} where Σ={a,b} is a non-regular language.
- Prove that L={aⁿbⁿcⁿ | n >= 0} is a non-regular language.