
Chapter Twelve: 
Context-Free Languages 



Context-Free Languages 

•  We defined the right-linear grammars by giving a 
simple restriction on the form of each production.   

•  By relaxing that restriction a bit, we get a broader 
class of grammars: the context-free grammars.   

•  These grammars generate the context-free 
languages, which include all the regular languages 
along with many that are not regular. 
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Examples 

•  We can prove that these languages are not 
regular, yet they have grammars 
–  {anbn} 

–  {xxR | x ∈ {a,b}*} 
 

–  {anbjan | n ≥ 0, j ≥ 1} 
•  Although not right-linear, these grammars still 

follow a rather restricted form… 

S → aSb | ε 

S → aSa | bSb | ε	

 S → aSa | R 
R → bR | b	

 



Context-Free Grammars 

•  A context-free grammar (CFG) is one in 
which every production has a single 
nonterminal symbol on the left-hand side 

•  A production like R → y is permitted 
–  It says that R can be replaced with y, regardless of 

the context of symbols around R in the string 
•  One like uRz → uyz is not permitted 

–  That would be context-sensitive: it says that R can 
be replaced with y only in a specific context 



Context-Free Languages 

•  A context-free language (CFL) is one that is 
L(G) for some CFG G 

•  Every regular language is a CFL 
–  Every regular language has a right-linear grammar 
–  Every right-linear grammar is a CFG 

•  But not every CFL is regular 
–  {anbn} 
–  {xxR | x ∈ {a,b}*} 
–  {anbjan | n ≥ 0, j ≥ 1} 
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Writing CFGs 
•  Programming: 

–  A program is a finite, structured, mechanical thing that specifies a 
potentially infinite collection of runtime behaviors 

–  You have to imagine how the code you are crafting will unfold when 
it executes 

•  Writing grammars: 
–  A grammar is a finite, structured, mechanical thing that specifies a 

potentially infinite language 
–  You have to imagine how the productions you are crafting will 

unfold in the derivations of terminal strings 
•  Programming and grammar-writing use some of the same 

mental muscles 
•  Here follow some techniques and examples… 



Regular Languages 

•  If the language is regular, we already have a 
technique for constructing a CFG 
–  Start with an NFA 
–  Convert to a right-linear grammar using the 

construction from chapter 10 



Example 
L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3} 

S → 1S | 0T | ε 
T → 1T | 0U 
U → 1U | 0S 
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Example 

•  The conversion from NFA to grammar always works 
•  But it does not always produce a pretty grammar 
•  It may be possible to design a smaller or otherwise more 

readable CFG manually: 
 

L = {x ∈ {0,1}* | the number of 0s in x is divisible by 3} 

S → 1S | 0T | ε 
T → 1T | 0U 
U → 1U | 0S 

S → T0T0T0S | T 
T → 1T | ε 



Balanced Pairs 

•  CFLs often seem to involve balanced pairs 
–  {anbn}: every a paired with b on the other side 
–  {xxR | x ∈ {a,b}*}: each symbol in x paired with its 

mirror image in xR 
–  {anbjan | n ≥ 0, j ≥ 1}: each a on the left paired with 

one on the right 
•  To get matching pairs, use a recursive 

production of the form R → xRy 
•  This generates any number of xs, each of 

which is matched with a y on the other side 



Examples 

•  We've seen these before: 
–  {anbn} 

–  {xxR | x ∈ {a,b}*} 
 

–  {anbjan | n ≥ 0, j ≥ 1} 

•  Notice that they all use the R → xRy trick  

S → aSb | ε 

S → aSa | bSb | ε	

 
S → aSa | R 
R → bR | b	

 



S → aSbbb | ε 

S → XSY | ε 
X → a | b 
Y → c | d	

 

Examples 

•  {anb3n} 
–  Each a on the left can be paired with three bs on the right 
–  That gives 

•  {xy | x ∈ {a,b}*, y ∈ {c,d}*, and |x| = |y|} 
–  Each symbol on the left (either a or b) can be paired with one on 

the right (either c or d) 
–  That gives 



Concatenations 
•  A divide-and-conquer approach is often helpful  
•  For example, L = {anbncmdm} 

–  We can make grammars for {anbn} and {cmdm}: 

–  Now every string in L consists of a string from the first followed by a 
string from the second 

–  So combine the two grammars and add a new start symbol: 

S1 → aS1b | ε S2 → cS2d | ε 

S → S1S2 
S1 → aS1b | ε 
S2 → cS2d | ε 



Concatenations, In General 

•  Sometimes a CFL L can be thought of as the 
concatenation of two languages L1 and L2 
–  That is, L = L1L2 = {xy | x ∈ L1 and y ∈ L2} 

•  Then you can write a CFG for L by combining 
separate CFGs for L1 and L2 
–  Be careful to keep the two sets of nonterminals separate, so 

no nonterminal is used in both 
–  In particular, use two separate start symbols S1 and S2 

•  The grammar for L consists of all the productions 
from the two sub-grammars, plus a new start symbol 
S with the production S → S1S2 



Unions, In General 

•  Sometimes a CFL L can be thought of as the union of 
two languages L = L1 ∪ L2 

•  Then you can write a CFG for L by combining 
separate CFGs for L1 and L2 
–  Be careful to keep the two sets of nonterminals separate, so 

no nonterminal is used in both 
–  In particular, use two separate start symbols S1 and S2 

•  The grammar for L consists of all the productions 
from the two sub-grammars, plus a new start symbol 
S with the production S → S1 | S2 



Example 

•  This can be thought of as a union: L = L1 ∪ L2 
–  L1 = {xxR | x ∈ {a,b}*} 

–  L2 = {z ∈ {a,b}* |  |z| is odd} 

•  So a grammar for L is 

L = {z ∈ {a,b}* | z = xxR for some x, or |z| is odd} 

S1 → aS1a | bS1b | ε 

S2 → XXS2 | X 
X → a | b 

S → S1 | S2 
S1 → aS1a | bS1b | ε 
S2 → XXS2 | X 
X → a | b 



Example 

•  This can be thought of as a union:  
–  L = {anbm | n < m} ∪ {anbm | n > m} 

•  Each of those two parts can be thought of as 
a concatenation: 
–  L1 = {anbn} 
–  L2 = {bi | i > 0} 
–  L3 = {ai | i > 0} 
–  L = L1L2 ∪ L3L1 

•  The resulting grammar: 

L = {anbm | n ≠ m} 

S → S1S2 | S3S1 
S1 → aS1b | ε 
S2 → bS2 | b 
S3 → aS3 | a 


