
Chapter Fourteen:
The Context-Free Frontier

At this point we have two major language categories, the regular languages and the context-
free languages, and we have seen that the CFLs include the regular languages, like this:

regular
languages

CFLs

L(a*b*)

{anbn}

Are there languages outside of the CFLs? In this chapter we will see that the answer is yes,
and we will see some simple examples of languages that are not CFLs.

• We have already seen that there are many closure properties for regular languages.

• Given any two regular languages, there are many ways to combine them—
intersections, unions, and so on—that are guaranteed to produce another regular
language.

• The context-free languages also have some closure properties, though not as many as the
regular languages.

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Non-context-free Languages

•  We have seen that one of the hallmarks of
context-free languages is some notion of
symmetry:
–  Matching a’s and b’s
–  Balanced parentheses
–  Etc.

•  It is precisely this symmetry that we use to
show that there are non-context-free
languages.

Parse Trees

•  We've treated productions as rules for
building strings

•  Now think of them as rules for building trees:
–  Start with S at the root
–  Add children to the nodes, always following the

rules of the grammar: R → x says that the
symbols in x may be added as children of the
nonterminal symbol R

–  Stop only when all the leaves are terminal symbols
•  The result is a parse tree

Example

<exp> ⇒ <exp> * <exp>
 ⇒ <exp> - <exp> * <exp>
 ⇒ a- <exp> * <exp>
 ⇒ a-b* <exp>
 ⇒ a-b*c

<exp> ::= <exp> - <exp> | <exp> * <exp> | <exp> = <exp>
 | <exp> < <exp> | (<exp>) | a | b | c

<exp>

<exp> * <exp>

b

<exp> - <exp>

a

c

•  The parse tree specifies:
–  Syntax: it demonstrates that a-b*c is in the language
–  Also, it is a plan for evaluating the expression when the program is

run
–  First evaluate a-b, then multiply that result by c

•  It specifies how the parts of the program fit together
•  And that says something about what happens when the

program runs

<exp>

<exp> * <exp>

b

<exp> - <exp>

a

c

Pumping Parse Trees

•  A pumping parse tree for a CFG G = (V, Σ, S, P) is a parse
tree with two properties:

1  There is a node for some nonterminal symbol A, which has that
same nonterminal symbol A as one of its descendants

2  The terminal string generated from the ancestor A is longer than
the terminal string generated from the descendant A

•  Like every parse tree, a pumping parse tree shows that a
certain string is in the language

•  Unlike other parse trees, it identifies an infinite set of other
strings that must also be in the language…

•  In other words: a grammar that produces an infinite set of
strings has to be recursive in its non-terminals.

Lemma 14.1.1

•  As shown:
–  uvwxy is the whole derived string
–  A is the nonterminal that is its own descendant
–  vwx is the string derived from the ancestor A
–  w is the string derived from the descendant
–  |vwx| > |w|, so v and x are not both ε

•  There are two subtrees rooted at A
•  We can make other legal parse trees by substitution using the recursive rule…

S

u v w x y

A

A
The grammar G generates a pumping
parse tree with yield as shown, then
L(G) includes uviwxiy for all i.

Consider the grammar G:
S → u A y
A → v A x
A → w
with A,S ∈ V and u,v,w,x,y ∈ Σ*

Recursive Rule!

S ⇒ uAy ⇒ uvAxy ⇒ uvwxy

Cut And Paste, i = 0

•  We can replace the vwx subtree with the w subtree
•  That makes a parse tree for uwy
•  That is, uviwxiy for i = 0
•  Corresponds to the derivation: S ⇒ u A y ⇒ u w y
•  We used the recursive rule zero times.

S

u v w x y

A

A

S

u

w

y

A

Cut And Paste, i = 2

•  We can replace the w subtree with the vwx subtree
•  That makes a parse tree for uvvwxxy
•  That is, uviwxiy for i = 2
•  Corresponds to the derivation:

 S ⇒ uAy ⇒ uvAxy ⇒ uvvAxxy ⇒ uvvwxxy
•  We used the recursive rule twice.

S

u v w x y

A

A

S

u v x y

A

v w x

A

A

S

u v x y

A

v w x

A

A

Cut And Paste, i = 3

•  We can replace the w subtree with the vwx, again
•  That makes a parse tree for uvvvwxxxy
•  That is, uviwxiy for i = 3 (you get the idea….)

S

u v x y

A

v x

A

A

v w x

A

Lemma 14.1.1,
Continued

•  We can substitute one A subtree for the other, any
number of times

•  That generates a parse tree for uviwxiy for any i
•  Therefore, for all i, uviwxiy ∈ L(G)

S

u v w x y

A

A

If a grammar G generates a
pumping parse tree with
yield as shown, then L(G)
includes uviwxiy for all i.

Useful Trees

•  If we can find a pumping parse tree, we can
conclude that for all i, uviwxiy ∈ L(G)

•  And note that all these uviwxiy are distinct,
because v and x cannot both be ε

S → S | S+S | S*S | a | b | c

S

b a

S + S

S

S + S

S * S

a b

c

S

a

Height Of A Parse Tree

•  The height of a parse tree is the number of
edges in the longest path from the start
symbol to any leaf

•  For example:
•  These are parse trees of heights 1, 2, and 3:

S → S | S+S | S*S | a | b | c

S

S + S

S * S

a b

S

c

S

S + S

b c

a

S * S

Minimum-Size Parse Trees
•  A minimum-size parse tree for a string x in a

grammar G is a parse tree that generates x, and has
no more nodes than any other parse tree in G that
generates x

•  For example:
•  Both these trees generate a*b+c, but the second one

is not minimum size:

Lemma 14.1.2

•  Proof: let G = (V, Σ, S, P) be any CFG, L(G) infinite
•  G generates infinitely many minimum-size parse

trees, since each string in L(G) has at least one
•  Only finitely many can have height |V| or less, so G

generates a minimum-size parse tree of height > |V|
•  Such a tree must be a pumping parse tree:

–  Property 1: it has a path with more than |V| edges; some
nonterminal A must occur at least twice on such a path

–  Property 2: replacing the ancestor A with the descendant A
makes a tree with fewer nodes; this can't be a tree yielding
the same string, because our tree was minimum-size

Every CFG G = (V, Σ, S, P) that generates an
infinite language generates a pumping parse tree.

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Theorem 14.2

•  Proof: let G = (V, Σ, S, P) be a CFG with Σ = {a,b,c}
•  Suppose by way of contradiction that L(G) = {anbncn}

is context free.
•  By Lemma 14.1.2, G generates a pumping parse tree
•  By Lemma 14.1.1, for some k, akbkck = uvwxy, where

v and x are not both ε and uv2wx2y is in L(G)
•  v and x must each contain only as, only bs, or only

cs; otherwise uv2wx2y is not even in L(a*b*c*)
•  So uv2wx2y has more than k copies of one or two

symbols, but only k of the third
•  uv2wx2y ∉ {anbncn}; by contradiction, L(G) is not

context-free

The language {anbncn} is not a CFL.

The Insight

•  There must be some string in L(G) with a
pumping parse tree: akbkck = uvwxy

•  But no matter how you break up akbkck into
those substrings uvwxy (where v and x are
not both ε) you can show uv2wx2y ∉ {anbncn}

•  Either:
–  v or x has more than one kind of symbol
–  v and x have at most one kind of symbol each

•  If v or x has more than one kind of symbol:
–  uv2wx2y would have as after bs and/or bs after cs
–  Not even in L(a*b*c*), so certainly not in {anbncn}
–  Example:

•  If v and x have at most one kind each:
–  uv2wx2y has more of one or two, but not all three
–  Not in {anbncn}
–  Example:

a a a a a b b b b b c c c c c

u v w x y

a a a a a b b b b b c c c c c

u v w x y

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Closure Properties

•  CFLs are closed for some of the same
common operations as regular languages:
–  Union
–  Concatenation
–  Kleene star
–  Intersection with a regular language

•  For the first three, we can make simple proofs
using CFGs…

Theorem 14.3.1

•  Proof is by construction using CFGs
•  Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2),

with L(G1) = L1 and L(G2) = L2
•  Assume V1 and V2 are disjoint (without loss of

generality, because symbols could be renamed)
•  Construct G = (V, Σ, S, P), where

–  V = V1∪V2∪{S}
–  Σ = Σ1∪Σ2
–  P = P1∪P2∪{(S→S1), (S→S2)}

•  L(G) = L1 ∪ L2, so L1 ∪ L2 is a CFL

If L1 and L2 are any context-free languages,
L1 ∪ L2 is also context free.

Theorem 14.3.2

•  Proof is by construction using CFGs
•  Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2),

with L(G1) = L1 and L(G2) = L2
•  Assume V1 and V2 are disjoint (without loss of

generality, because symbols could be renamed)
•  Construct G = (V, Σ, S, P), where

–  V = V1∪V2∪{S}
–  Σ = Σ1∪Σ2
–  P = P1∪P2∪{(S→S1S2)}

•  L(G) = L1L2, so L1L2 is a CFL

If L1 and L2 are any context-free languages,
L1L2 is also context free.

almost the same proof!

Kleene Closure

•  The Kleene closure of any language L is
L* = {x1x2 ... xn | n ≥ 0, with all xi ∈ L}

•  This parallels our use of the Kleene star in
regular expressions

Theorem 14.3.3

•  Proof is by construction using CFGs
•  Given G = (V, Σ, S, P) with L(G) = L
•  Construct G' = (V', Σ, S', P'), where

–  V' = V∪{S'}
–  P' = P∪{(S'→SS'), (S'→ε)}

•  L(G') = L*, so L* is a CFL

If L is any context-free language, L* is also context free.

Theorem 14.3.4

•  Proof sketch: by construction of a stack machine
•  Given a stack machine M1 for L1 and an NFA M2 for L2
•  Construct a new stack machine for L1 ∩ L2
•  A bit like the product construction:

–  If M1's stack alphabet is Γ, and M2's state set is Q, the new
stack machine uses Γ × Q as its stack alphabet

–  It keeps track of both M1's current stack and M2's current
state

If L1 is any context-free language and L2 is any
regular language, then L1 ∩ L2 is context free.

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Non-Closure Properties

•  As we just saw, CFLs have some of the same
closure properties as regular languages

•  But not all
•  Not closed for intersection or complement…

Theorem 14.4.1

•  Proof: by counterexample
•  Consider these CFGs:

•  Now L(G1) = {anbncm}, while L(G2) = {ambncn}
•  The intersection is {anbncn}, which is not a CFL
•  So the CFLs are not closed for intersection

The CFLs are not closed for intersection.

S1 → A1B1
A1 → aA1b | ε
B1 → cB1 | ε

S2 → A2B2
A2 → aA2 | ε
B2 → bB2c | ε

Theorem 14.4.2

•  Proof: by contradiction
•  By Theorem 14.3.1, CFLs are closed for union
•  Suppose by way of contradiction that they are also

closed for complement
•  By DeMorgan's laws we have
•  This defines intersection in terms of union and

complement
•  So CFLs are closed for intersection
•  But this contradicts Theorem 14.4.1
•  By contradiction, the CFLs are not closed for

complement

The CFLs are not closed for complement.

€

L1∩L2 = L1∪L2

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Pumping Parse
Trees, Review

•  A pumping parse tree for
a CFG G = (V, Σ, S, P)
is a parse tree with two
properties:
1  There is a node for some nonterminal symbol A, which has

that same nonterminal symbol A as one of its descendants
2  The terminal string generated from the ancestor A is longer

than the terminal string generated from the descendant A
•  We proved that every grammar for an infinite

language generates a pumping parse tree…

S

u v w x y

A

A

Lemma 14.1.2

•  Proof: let G = (V, Σ, S, P) be any CFG, L(G) infinite
•  G generates infinitely many minimum-size parse

trees, since each string in L(G) has at least one
•  Only finitely many can have height |V| or less, so G

generates a minimum-size parse tree of height > |V|
•  Such a tree must be a pumping parse tree:

–  Property 1: it has a path with more than |V| edges; some
nonterminal A must occur at least twice on such a path

–  Property 2: replacing the ancestor A with the descendant A
makes a tree with fewer nodes; this can't be a tree yielding
the same string, because our tree was minimum-size

Every CFG G = (V, Σ, S, P) that generates an
infinite language generates a pumping parse tree.

The Value of k

•  just as in the case of regular languages we
want to characterize a value of k that will
force derivations in CFGs to reuse a non-
terminal.

•  we use the fact the a tree of height h with
branching factor b has at most bh leaf nodes.

lemma

•  Proof:
–  Let b be the length of the longest RHS of any production in P
–  Then b is the maximum branching factor in any tree
–  A tree of height |V|+1 can have at most b|V|+1 leaves
–  Let k = b|V|+1+1

For every CFG G = (V, Σ, S, P) there exists some
integer k greater than the length of any string generated
by any parse tree of height |V|+1.

The Value Of k

•  The proof states that we can look at the
structure of the grammar and always find a
value for k such that a CFG will generate a
pumping parsing tree.

•  We'll use the fact that such a k exists in
proofs; we won't need an actual value

•  Just like the k in the pumping lemma for
regular languages

Lemma 14.5.3: The Pumping
Lemma for Context-Free Languages

•  L is a CFL, so there is some CFG G with L(G) = L
•  Let k be as given for G by Lemma 14.5.2
•  We are then given some z ∈ L with |z| ≥ k
•  Consider any minimum-size parse tree for z
•  It has height > |V|+1, so our Lemma applies
•  This is a parse tree for z and it is a pumping parse tree

For all context-free languages L there exists some k ∈ N such
that for all z ∈ L with |z| ≥ k, there exist uvwxy such that:

 1. z = uvwxy,
 2. v and x are not both ε,
 3. |vwx| ≤ k, and
 4. for all i, uviwxiy ∈ L.

Matching Pairs

•  The pumping lemma shows again how matching
pairs are fundamental to CFLs

•  Every sufficiently long string in a CFL contains a
matching pair of substrings (the v and x of the
lemma)

•  These can be pumped in tandem, always producing
another string uviwxiy in the language

Outline

•  14.1 Pumping Parse Trees
•  14.2 The Language {anbncn}
•  14.3 Closure Properties For CFLs
•  14.4 Non-Closure Properties
•  14.5 A Pumping Lemma
•  14.6 Pumping-Lemma Proofs
•  14.7 The Languages {xx}

Pumping-Lemma Proofs

•  The pumping lemma is very useful for proving
that languages are not context free

•  For example, {anbncn}…

{anbncn} Is Not Context Free
1  Proof is by contradiction using the pumping lemma for context-free

languages. Assume that L = {anbncn} is context free, so the pumping
lemma holds for L. Let k be as given by the pumping lemma.

2  Choose z = akbkck. Now z ∈ L and |z| ≥ k as required.
3 Let u, v, w, x, and y be as given by the pumping lemma, so that

uvwxy = akbkck, v and x are not both ε, |vwx| ≤ k, and for all i,
uviwxiy ∈ L.

4 Now consider pumping with i = 2. The substrings v and x cannot
contain more than one kind of symbol each—otherwise the string
uv2wx2y would not even be in L(a*b*c*). So the substrings v and x
must fall within the string akbkck in one of these ways…

{anbncn}, Continued

 But in all these cases, since v and x are not both ε, pumping
changes the number of one or two of the symbols, but not all
three. So uv2wx2y ∉ L.

5  This contradicts the pumping lemma. By contradiction,
L = {anbncn} is not context free.

 ak bk ck
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x

 ak bk ck
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x

{anbncn}, Revisited

•  Case 6 would be a contradiction for another
reason: |vwx| > k

•  We can rule out such cases…

