
Chapter Sixteen: 
Turing Machines 



• We now turn to the most powerful kind of automaton we 
will study: the Turing machine.   

• Although it is only slightly more complicated than a 
finite-state machine, a Turing machine can do much 
more.   
• It is, in fact, so powerful no other, more powerful 
model exists.  

• The TM is the strongest of computational mechanisms, it 
does have one weakness, revealed in this chapter: it can 
get stuck in an infinite loop. 
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Turing Machine (TM) 

•  Input is a tape with one symbol at each position 
•  Tape extends infinitely in both directions 
•  Those positions not occupied by the input contain a special 

blank-cell symbol B 
•  The TM has a head that can read and write, and can move in 

both directions 
•  Head starts at the first input symbol 

 

B B x1 x2 
 

B … 

TM state 
machine 

… xn … B xn-1 



Turing Machine (TM) 

•  A state machine controls the read/write head 
•  Move is determined by current state and symbol 
•  On each move: write a symbol, make a state 

transition, and move the head one place, left or right 
•  If it enters an accepting state, it halts and accepts 
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Difference From DFA 

•  TMs are like DFAs, but with: 
–  Ability to move both left and right, unboundedly 
–  Ability to write as well as read 

•  Important difference about how they accept: 
–  A DFA reads to the end of the input, then accepts if that last state is 

accepting 
–  A TM accepts the moment it enters an accepting state; final tape 

and head position don't matter; it doesn't even have to read all its 
input 

–  Transitions leaving an accepting state are never used, so there is 
never any need for more than one accepting state 



TM Transitions 

•  State-transition diagrams 

•  Right moves: if in state q, and the current 
tape symbol is a, write b over the a, move 
one place to the right, and go to state r 

•  Left moves: same, but move left 

 
q r 

a/b,R 

q r a/b,L 
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TMs For Regular Languages 

•  TMs can easily handle all regular languages 
•  In fact, a TM that always moves the head to 

the right works much like a DFA 
•  Except for that difference about the 

mechanism for accepting 
•  A TM only enters its accepting state when it 

has reached a final decision 



L(a*b*c*) 

•  Like a DFA: 
–  Always moves right 
–  Does not change the  

tape (always writes 
what it just read) 

•  Since it never moves left, it  
really doesn't matter what it writes 

•  It could write B on every move, erasing as it 
reads, and still accept the same language 
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TMs For Context-Free Languages 

•  TMs can also easily handle all CFLs 
•  It is possible to take any stack machine and 

convert it into an equivalent TM that uses the 
infinite tape as a stack 

•  We'll demonstrate this more generally later 
•  But it is often easier to find some non-stack-

oriented approach 
•  For example, {anbn}… 



Strategy For {anbn} 

•  Repeatedly erase first (a) and last (b); if the string was in 
{anbn}, this leaves nothing 

•  Five steps: 
1.  If the current symbol is B, go to step 5.  If the current symbol is a, 

write a B over it and go to step 2. 
2.  Move right past any as and bs.  At the first B, move left one 

symbol and go to step 3. 
3.  If the current symbol is b, write a B over it and go to step 4. 
4.  Move left past any as and bs.  At the first B, move right one 

symbol and go to step 1. 
5.  Accept. 



{anbn} 
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Strategy For {anbncn} 

1.  If the current symbol is B, go to step 7.  If the current symbol is a, 
write an X over it and go to step 2. 

2.  Move right past any as and Ys.  At the first b, write Y over it and 
go to step 3. 

3.  Move right past any bs and Zs.  At the first c, write Z over it and 
go to step 4. 

4.  Move left past any as, bs, Zs, and Ys.  At the first X, move right 1 
symbol and go to step 5. 

5.  If the current symbol is a, write X and go to step 2.  If the current 
symbol is Y go to step 6. 

6.  Move right past any Ys and Zs.  At the first B, go to step 7. 
7.  Accept. 
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Example 

•  See example slides 
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The 7-Tuple 

•  A TM M is a 7-tuple M = (Q, Σ, Γ, δ, B, q0, F): 
–  Q is the finite set of states 
–  Σ is the input alphabet 
–  Γ is the tape alphabet, with Σ ⊂ Γ and Q ∩ Γ = {} 
–  δ ∈ (Q × Γ → Q × Γ × {L,R}) is the transition 

function 
–  B is the blank symbol, B ∈ Γ, B ∉ Σ 
–  q0 ∈ Q is the start state 
–  F ⊆ Q is the set of accepting states 



The Transition Function 

•  δ ∈ (Q × Γ → Q × Γ × {L,R}) 
•  That is, δ(q,X) = (p,Y,D), where 

–  Input q is the current state 
–  Input X is the symbol at the current head position 
–  Output p is the next state 
–  Output Y is the symbol to write at the current head position 

(over the X) 
–  Output D is a direction, L or R, to move the head 

•  δ is deterministic: at most one move from each 
configuration 

•  δ need not be defined over its whole domain, so there 
may be some q and X with no move δ(q,X) 
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TM Instantaneous Description 

•  An instantaneous description (ID) for a TM is a string 
xqy: 
–  x ∈ Γ* represents the tape to the left of the head  
–  q is the current state 
–  y ∈ Γ* represents the tape at and to the right of the head 

•  ID strings are normalized as follows: 
–  In x, leading Bs are omitted, except when the left part is all 

Bs, in which case x = B 
–  In y, trailing Bs are omitted, except when the right part is all 

Bs, in which case y = B 
–  We define a function idfix(z) that normalizes an ID string z in 

this way, removing (or adding) leading and trailing Bs as 
necessary 



A One-Move Relation On IDs 

•  We will write I ↦ J if I is an ID and J is an ID 
that follows from I after one move of the TM 

•  Technically: ↦ is a relation on IDs, defined by 
the δ function for the TM 

•  Then for any x ∈ Γ*, c ∈ Γ, q ∈ Q, a ∈ Γ, and 
y ∈ Γ*, we have two kinds of moves: 
–  Left moves: if δ(q,a) = (p,b,L) then xcqay ↦ idfix(xpcby) 
–  Right moves: if δ(q,a) = (p,b,R) then xcqay ↦ idfix(xcbpy) 



Zero-Or-More-Move Relation 

•  As we did with grammars, NFAs, and stack 
machines, we extend this to a zero-or-more-
move ↦* 

•  Technically, ↦* is a relation on IDs, with I ↦* J 
if and only if there is a sequence of zero or 
more  relations that starts with I and ends with 
J 

•  Note this is reflexive by definition: we always 
have I ↦* I by a sequence of zero moves 



The Language Accepted  
By A TM 

•  idfix(q0x) is the initial ID of M, given input x ∈ Σ* 
•  (idfix(q0x) = Bq0x if x ≠ ε, or Bq0B if x = ε) 
•  Then x is accepted if and only if M has a sequence of 

zero or moves from idfix(q0x) to some ID in an 
accepting state 
–  Regardless of what is left on the tape 
–  Regardless of the final position of the head 

•  Technically,  
   L(M) = {x ∈ Σ* | idfix(q0x) ↦* ypz for some p ∈ F} 
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Three Possible Computation 
Outcomes for a TM 

•  It halts and accepts:  
–  It halts and accepts if it reaches an accepting 

state; even if there are transitions leaving the 
accepting state, since they have no effect on L(M) 

•  It halts and rejects (it gets stuck):  
–  It halts and rejects if does not reach an accepting 

state, but gets into an ID I with no J for which I ↦ J 
•  And there is a third possibility: it runs forever: 

–  It always has a move, but never reaches an 
accepting state 



Example: 

•  M = ({q, r, s}, {0,1}, {0,1,B}, δ, B, q, {s}): 
–  δ(q,1) = (r,1,R) 
–  δ(q,0) = (s,0,R) 
–  δ(r,B) = (q,B,L) 

•  Given input 0, M halts and accepts: 
–  Bq0 ↦ 0sB 
–  In fact, L(M) = L(0(0+1)*) [accepts any string of 0s and 1s if it starts 

with a 0] 
•  Given input ε, M halts and rejects: 

–  BqB ↦ ? 
•  Given input 1, M runs forever: 

–  Bq1 ↦ 1rB ↦ Bq1 ↦ 1rB ↦ Bq1 ↦ 1rB ↦ … 



Running Forever 

•  We can make a TM for L(0(0+1)*) that halts 
on all inputs 

•  In general, though, it is not always possible 
for TMs to avoid infinite loops, as we will 
prove in later chapters 

•  The risk of running forever is the price TMs 
pay for their great power 



Earlier Infinite Loops 

•  NFAs could in some sense run forever, since 
they can contain cycles of ε-transitions 

•  Same with stack machines 
•  But these were always avoidable: 

–  Any NFA could be converted into one without 
cycles of ε-transitions (in fact, into a DFA, without 
ε-transitions at all) 

–  Similarly, one can show that for any CFL there is a 
stack machine without cycles of ε-transitions 

•  For TMs they are not avoidable… 



Three-Way Partition 

•  The three possible TM outcomes partition Σ* into 
three subsets 

•  So instead of just defining L(M), a TM really defines 
three languages: 
–  The language accepted by a TM: 

  L(M) = {x ∈ Σ* | idfix(q0x) ↦* ypz for some p ∈ F} 
–  The language rejected by a TM: 

 R(M) = {x ∈ Σ* |  x ∉ L(M) and there is some ID  
  I with idfix(q0x) ↦* I and no J with I ↦ J} 

–  The language on which a TM runs forever: 
 F(M) = {x ∈ Σ* |  x ∉ L(M) and x ∉ R(M)} 



Recursive and RE 

•  A TM M is a total TM if and only if F(M) = {}  
–  A total TM never loops forever 

•  A recursive language is one that is L(M) for some 
total TM M (it never loops forever) 

•  A recursively enumerable (RE) language is one that 
is L(M) for some TM M (it can loop forever) 

•  We will see that these two sets of languages are not 
the same; some languages are RE but not recursive 

•  The names are odd, but standard: 
–  RE and recursive languages were identified in mathematical 

studies of computability using recursive function theory 



Outline 

•  16.1 Turing Machine Basics 
•  16.2 Simple TMs 
•  16.3 A TM for {anbncn} 
•  16.4 The 7-Tuple 
•  16.5 The Languages Defined By A TM 
•  16.6 To Halt Or Not To Halt 
•  16.7 A TM for {xcx | x ∈ {a,b}*} 
•  16.8 Three Tapes 
•  16.9 Simulating DFAs 
•  16.10 Simulating Other Automata 



{xcx | x ∈ {a,b}*} 

•  Not context-free, as we've seen 
•  A TM for this language can work by checking 

each symbol in the first x against the 
corresponding symbol in the second x 

•  To keep track of where it is, it will mark those 
symbols that have already been checked 

•  That is, it will overwrite them with marked 
versions of the same symbols, for instance by 
overwriting a with a' 



A TM For {xcx | x ∈ {a,b}* }   
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Example 

•  See example slides 



Two General Techniques 

•  Marking:  
–  A cell can be marked by overwriting the symbol 

with a marked version of that symbol 
–  Our input alphabet was {a,b,c}, but the tape 

alphabet was {a,b,c,a',b',B} 
•  Remembering 

–  A TM can use states to record any finite 
information 

–  Ours remembered whether a or b was seen in the 
first half, using two paths of states 
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A 3-Tape TM 

•  Simulations are easier if we have a 3-tape TM 
•  Like the basic model, but with three tapes, each with 

an independent read/write head 
•  Basic model: δ(q,X) = (p,Y,D) 

–  Two inputs: current state and symbol at head 
–  Three outputs: new state, symbol to write, and direction 

•  3-tape model: δ(q,X1,X2,X3) = (p,Y1,D1,Y2,D2,Y2,D3) 
–  Separate read, write, and direction for each of the three 

heads 

•  Otherwise, the same 



Same Power 

•  The 3-tape model is easier to program, but no 
more powerful than the basic model 

•  For any 3-tape TM we can construct an 
equivalent basic TM 

•  We can encode all the information from the 3 
tapes (with their head positions) in a single 
tape, using an enlarged alphabet… 



•  Image the three tapes side by side, each with its current head 
position 

•  Encode all this information on one tape, using triples as symbols 
in the enlarged tape alphabet: 



1-Tape TM Construction 

•  Given any 3-tape M3, construct a 1-tape M1 
–  Use the alphabet of triples, with (B,B,B) as blank 
–  To simulate a move of M3, M1 makes two passes: 

•  A left-to-right pass, collecting the three input symbols.  Keep 
track (using state) of M3’s state and input symbols.  Now if M3 
accepts, halt and accept; if M3 rejects, halt and reject. 

•  A right-to-left pass, carrying out M3’s actions at each of its 
three head positions (writing and moving marks).  Leave the 
head at the leftmost mark and go to step 1.  

•  Far more states, symbols, and moves than M3 
•  But for any input string, M1’s outcome matches M3’s 



Theorem 16.8 

•  Proof sketch: 
–  Given any 3-tape TM we can construct a 1-tape 

TM that simulates it, as just outlined 
–  Given any 1-tape TM we can construct a 3-tape 

TM that simulates it, simply by not using two of its 
tapes 

For any given partition of a Σ* into three subsets L, R, 
and F, there is a three-tape TM M3 with L(M3) = L, 
R(M3) = R, and F(M3) = F, if and only if there is a one-
tape TM M1 with L(M1) = L, R(M1) = R, and F(M1) = F. 
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Automata As Input 

•  Our goal is to make TMs that can simulate 
other automata, given as input 

•  TMs can only take strings as input, so we 
need a way to encode automata as strings 

•  We’ll start with the simplest: DFAs… 



DFAs Encoded Using {0,1} 

•  The DFA’s alphabet and strings: 
–  Number Σ arbitrarily as Σ = {σ1, σ2, ...} 
–  Use the string 1i to represent symbol σi 
–  Use 0 as a separator for strings 
–  For example, if Σ = {a, b}, let a = σ1 and b = σ2; 

then abba is represented by 101101101 
•  The DFA’s states: 

–  Number Q = {q1, q2, ...}, making q1 the start state 
and numbering the others arbitrarily 

–  Use the string 1i to represent symbol qi 



DFA Encoding, Continued 
•  The DFA’s transition function: 

–  Encode each transition δ(qi,σj) = qk as a string 1i01j01k 

–  Encode the entire transition function as a list of such transitions, in 
any order, using 0 as a separator 

–  For example, 

–  Numbering a as σ1 and b as σ2, δ is 
 δ(q1,σ1) = q2  δ(q1,σ2) = q1 
 δ(q2,σ1) = q1  δ(q2,σ2) = q2 

–  That is encoded as: 
 101011  0  101101  0  110101  0  11011011 



DFA Encoding, Continued 

•  The DFA’s set of accepting states: 
–  We already encode each state qi as 1i 
–  Use a list of state codes, separated by 0s 

•  Finally, the complete DFA: 
–  Transition-function string, 00, accepting-state string: 

 101011  0  101101  0  110101  0  11011011    00    11 



Simulating a DFA 

•  We have a way to represent a DFA as a 
string over {0,1} 

•  Now, we’ll show how to construct a TM that 
simulates any given DFA 
–  Given the encoded DFA as input, along with an 

encoded input string for it 
–  Decide whether the given DFA accepts the given 

string 
•  We’ll use a 3-tape TM… 



3-Tape DFA Simulator 

•  First tape holds the DFA being simulated 
•  Second tape holds the DFA’s input string 
•  Third tape hold the DFA’s current state qi, 

encoded as 1i as usual 



Example: 
•  Initial configuration, in the start state, on input abab: 

•  Each simulated move performs one state transition 
and erases one encoded input symbol… 



First move on abab: read 
a, go to state q2 



Strategy 
•  Step 1: handle termination: 

–  If the second tape is not empty, go to step 2 
–  If it is empty, the DFA is done; search the list of accepting 

states (tape 1) for a match with the final state (tape 3) 
–  If found, halt and accept; if not, halt and reject 

•  Step 2: look up move: 
–  Search tape 1 for the move 1i01j01k that applies now, where 

1i matches the current state (tape 3) and 1j matches the 
current input symbol (tape 2) 

•  Step 3: execute move: 
–  Replace the 1i on the tape 3 with 1k 
–  Write B over the 1j (and any subsequent 0) on tape 2 
–  Go to step 1 



An Easy Simulation 

•  That was no challenge for our 3-tape TM 
•  Used only a fixed, finite portion of each tape 
•  There is (by Theorem 16.8) a 1-tape TM with 

the same behavior 
•  One detail we’re skipping: what should the 

TM do with ill-formed inputs? 
–  If we specified behavior for ill-formed inputs, there 

would have to be an extra initial pass to verify the 
proper encoding of a DFA and its input 
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Simulating Other Automata 

•  We can use the same 3-tape technique to 
simulate all our other automata 

•  Trickier for nondeterministic models (NFAs 
and stack machines): our deterministic TM 
must search all sequences of moves 

•  Relatively straightforward for deterministic 
automata 



Language Categories 

•  Proofs of these inclusions can be constructed 
by having total TMs simulate other automata 



Universal Turing Machines 

•  A universal Turing machine is any Turing 
machine that takes an encoded Turing 
machine and an encoded input string, and 
decides whether the given Turing machine 
accepts the given string 

•  It’s like an interpreter: a program that takes 
another program as input and carries out the 
instructions of that input program 

•  A universal TM is, in effect, a TM interpreter 



A Universal TM Outline 

•  Design a TM encoding using {0,1}: 
–  Most of it is the transition function, like our DFA encoding 

•  Familiar 3-tape layout: 
–  Tape 1: the encoded TM as input 
–  Tape 2: that TM’s tape (input and working space) 
–  Tape 3: that TM’s current state 

•  Simulation: 
–  Look up the appropriate transition (on tape 1) 
–  Do the necessary write and move (on tape 2) 
–  Do the state change (on tape 3) 
–  Repeat until accepting state or no next move 



Constructions? 

•  All the “constructions” since 16.7 have been 
high-level outlines, not detailed constructions: 
–  3-tape to 1-tape conversion 
–  DFA simulator 
–  Universal TM 

•  In effect, we sketched proofs that the 
constructions were possible, without actually 
doing them 

•  Why not give more detail? 



The Problem Of Detail 

•  It is hard to figure out what a TM does by inspection 
–  Very hard for small TMs 
–  Inhumanly difficult for large TMs 

•  To convince someone that a language can be 
recognized by a TM, it is not often useful to just show 
the TM that does it 

•  It is more convincing to give less detail -- to describe 
in outline how a TM might work 

•  Once you’re convinced a TM can be constructed for 
a given problem, there is no point in actually 
constructing it. 


