
Chapter Eighteen:
Uncomputability

Review: Computability
•  A language is recursive if and only if it is L(M) of

some total TM M.
•  A function is (Turing) computable if and only if a total

TM computes it.
•  But we have:

–  For every language L we can define a corresponding
function, such as f(x) = 1 if x ∈ L, 0 if x ∉ L

–  For every function f we can define a corresponding
language, such as L = {x#y | y = f(x)}

•  Therefore, L is recursive if and only if it is (Turing)
computable.

•  Church-Turing Thesis: Anything an Algorithm can do
a TM can do, and vice versa.

The Church-Turing Thesis gives a definition of computability, like a
border surrounding the algorithmically solvable problems.

regular
languages

CFLs

L(a*b*)

{anbn} recursive
languages

{anbncn}

Beyond that border is a wilderness of uncomputable problems. This
is one of the great revelations of twentieth-century mathematics: the

discovery of simple problems whose algorithmic solution would be
very useful but is forever beyond us.

Outline
•  18.1 Decision and Recognition Methods
•  18.2 The Language Lu
•  18.3 The Halting Problems
•  18.4 Reductions Proving a Language Is Recursive
•  18.5 Reductions Proving a Language is Not Recursive
•  18.6 Rice's Theorem
•  18.7 Enumerators
•  18.8 Recursively Enumerable Languages
•  18.9 Languages That Are Not RE
•  18.10 Language Classifications Revisited
•  18.11 Grammars and Comnputability
•  18.12 Oracles
•  18.13 Mathematical Uncomputabilities

Switching To Java-Like
Syntax

•  In this chapter we switch from using Turing machines
to using a Java-like syntax

•  All the following ideas apply to any Turing-equivalent
formalism

•  Java-like syntax is easier to read than TMs
•  It is just a different way of stating an algorithm and we

know: for every algorithm we have a TM, and vice
versa (Church-Turing Thesis)

•  Note, this is not real Java; no limitations
•  In particular, no bounds on the length of a string or

the size of an integer

Decision Methods

•  Total TMs correspond to decision methods in
our Java-like notation

•  A decision method takes a String
parameter and returns a boolean value

•  Another way of saying computable: it always
returns, and does not run forever.

•  Example, {ax | x ∈ Σ*}:
boolean ax(String p) {
 return (p.length()>0 && p.charAt(0)=='a');
}

Decision Method Examples

•  {}:

•  Σ*:

•  As with TMs, the language accepted is L(m):
–  L(emptySet) = {}
–  L(sigmaStar) = Σ*

boolean emptySet(String p) {
 return false;
}

boolean sigmaStar(String p) {
 return true;
}

Recursive Languages
•  Previous definition: L is a recursive language if and

only if it is L(M) for some total TM M
•  New definition: L is a recursive language if and only if

it is L(m) for some decision method m
•  Recursive Language = (Turing) Decidable Language

Recognition Methods

•  For methods that might run forever, a broader
term

•  A recognition method takes a String
parameter and either returns a boolean value
or runs forever

•  A decision method is a special kind of
recognition method, just as a total TM is a
special kind of TM

Recursively Enumerable
Languages

•  Previous definition: L is a recursively
enumerable language if and only if it is L(M)
for some TM M

•  New definition: L is a recursively enumerable
language if and only if it is L(m) for some
recognition method m

•  Recursively Enumerable Language = (Turing)
Recognizable Language

{anbncn} Recognition Method

•  Highly inefficient, but we don’t care about that
•  We do care about termination; this recognition

method loops forever if the string is not accepted
•  It demonstrates only that {anbncn} is RE; we know it is

recursive, so there is a decision method for it…

boolean anbncn1(String p) {
 String as = "", bs = "", cs = "";
 while (true) {
 String s = as+bs+cs;
 if (p.equals(s)) return true;
 as += 'a'; bs += 'b'; cs += 'c';
 }
}

{anbncn} Decision Method

•  L(anbncn1) = L(anbncn2) = {anbncn}
•  But anbncn2 is a decision method, showing

that the language is recursive and not just RE

boolean anbncn2(String p) {
 String as = "", bs = "", cs = "";
 while (true) {
 String s = as+bs+cs;
 if (s.length()>p.length()) return false;
 else if (p.equals(s)) return true;
 as += 'a'; bs += 'b'; cs += 'c';
 }
}

Universal Java Machine
•  A universal TM performs a simulation to decide

whether the given TM accepts the given string
•  It is possible to implement the same kind of thing in

Java; a run method like this:
/**
 * run(p, in) takes a String ‘p’ which is the text
 * of a recognition method, and a String ‘in’ which is
 * the input for that method. We compile the method,
 * run it on the given parameter string, and return
 * whatever result it returns. (If it does not
 * return, neither do we.)
 */
boolean run(String p, String in) {
 ... // don’t care about the details here

}

run Examples
•  sigmaStar("abc") returns true, so the run in this fragment

would return true:

•  ax("ba") returns false, so the run in this fragment would
return false:

String s = "boolean sigmaStar(String p) {return true;}";
run(s,"abc");

String s =
 "boolean ax(String p) { " +
 " return (p.length()>0 && p.charAt(0)=='a'); " +
 "} ";
run(s,"ba");

run Examples, Continued

•  anbncn1("abbc") runs forever, so the run
in this fragment would never return:

String s =
 "boolean anbncn1(String p) { " +
 " String as = \"\", bs = \"\", cs = \"\"; " +
 " while (true) { " +
 " String s = as+bs+cs; " +
 " if (p.equals(s)) return true; " +
 " as += 'a'; bs += 'b'; cs += 'c'; " +
 " } " +
 "} ";
run(s,"abbc");

 ‘run’ is a recognition method!

Outline
•  18.1 Decision and Recognition Methods
•  18.2 The Language Lu
•  18.3 The Halting Problems
•  18.4 Reductions Proving a Language Is Recursive
•  18.5 Reductions Proving a Language is Not Recursive
•  18.6 Rice's Theorem
•  18.7 Enumerators
•  18.8 Recursively Enumerable Languages
•  18.9 Languages That Are Not RE
•  18.10 Language Classifications Revisited
•  18.11 Grammars and Comnputability
•  18.12 Oracles
•  18.13 Mathematical Uncomputabilities

The Perils Of Infinite
Computation

•  You run a program, and wait… and wait…
•  You ask, “Is this stuck in an infinite loop, or is it just

taking a long time?”
•  No sure way for a person to answer such questions
•  No sure way for a computer to find the answer for

you…

int j = 0;
for (int i = 0; i < 100; j++) {
 j += f(i);
}

The Language Lu
•  Lu = L(run) = {(p,in) | p is a recognition method and in ∈ L(p)}
•  (Remember u for universal)
•  A corresponding language for universal TMs:

 Lu = {m#x | m encodes a TM and x is a string it accepts}
•  We have a recognition method for it, so we know Lu is RE
•  Is it recursive?

Is Lu Recursive?
•  That is, is it possible to write a decision

method with this specification:

•  Just like the run method, but does not run
forever, even when run(p,in) would

/**
 * shortcut(p,in) returns true if run(p,in) would
 * return true, and returns false if run(p,in)
 * would return false or run forever.
 */
boolean shortcut(String p, String in) {
 ...
}

Example
•  For example, the shortcut in this fragment:

•  It would return false, even though
anbncn1("in") would run forever

String x =
 "boolean anbncn1(String p) { " +
 " String as = \"\", bs = \"\", cs = \"\"; " +
 " while (true) { " +
 " String s = as+bs+cs; " +
 " if (p.equals(s)) return true; " +
 " as += 'a'; bs += 'b'; cs += 'c'; " +
 " } " +
 "} ";
shortcut(x,"abbc")

Is This Possible?
•  Presumably, shortcut would have to simulate the

input program as run does
•  But it would have to detect infinite loops
•  Some are easy enough to detect:

 while(true) {}
•  A program might even be clever enough to reason

about the nontermination of anbncn1
•  It would be very useful to have a debugging tool that

could reliably alert you to infinite computations

The Bad News

•  No such shortcut method exists and
we can prove it!

•  Our proof is by contradiction:
– Assume by way of contradiction that Lu is

recursive, so some implementation of
shortcut exists

– Then we could use it to implement this…

nonSelfAccepting

•  This determines what the given program would
decide, given itself as input, then it returns the
opposite

•  So L(nonSelfAccepting) is the set of recognition
methods that do not accept themselves

/**
 * nonSelfAccepting(p) returns false if run(p,p)
 * would return true, and returns true if run(p,p)
 * would return false or run forever.
 */
boolean nonSelfAccepting(String p) {
 return !shortcut(p,p);
}

nonSelfAccepting(
 "boolean sigmaStar(String p) {return true;}"
);

nonSelfAccepting
Example

•  sigmaStar("boolean sigmaStar…")
returns true: sigmaStar accepts everything,
so it certainly accepts itself

•  So it is self-accepting, and
nonSelfAccepting returns false

nonSelfAccepting(
 "boolean ax(String p) { " +
 " return (p.length()>0 && p.charAt(0)=='a'); " +
 "} "
);

nonSelfAccepting
Example

•  ax("boolean ax…") returns false: ax
accepts everything starting with a, but its own
source code starts with b

•  So it is not self-accepting, and
nonSelfAccepting returns true

Back to the Proof

•  We assumed by way of contradiction that
shortcut could be implemented

•  Using it, we showed an implementation of
nonSelfAccepting

•  Now comes the tricky part: what happens if
we call nonSelfAccepting, giving it itself
as input?

•  We can easily arrange to do this:

boolean nonSelfAccepting(String p) {
 return !shortcut(p,p);
};

String s = "boolean nonSelfAccepting(p) { " +
 " return !shortcut(p,p); " +
 "} ”;

nonSelfAccepting(s);

Does nonSelfAccepting
Accept Itself?

•  Now consider:
–  shortcut(“nonSelfAccepting…”,”nonSelfAccepting…”) = true, but
–  nonSelfAccepting(“nonSelfAccepting…”) = false
–  Contradiction, not possible

•  Or
–  shortcut(“nonSelfAccepting…”,”nonSelfAccepting…”) = false, but
–  nonSelfAccepting(“nonSelfAccepting…”) = true
–  Contradiction, not possible

•  These are the only two outcomes because shortcut is a decision method by
assumption.

Proof Summary
•  We assumed by way of contradiction that shortcut

could be implemented
•  Using it, we showed an implementation of
nonSelfAccepting

•  We showed that applying nonSelfAccepting to
itself results in a contradiction

•  By contradiction, no program satisfying the
specifications of shortcut exists

•  In other words…

Theorem 18.2

•  Our first example of a problem that is outside the
borders of computability:
–  Lu is not recursive
–  The shortcut function is not computable
–  The machine-M-accepts-string-x property is not decidable

•  This implies: No total TM can be a universal TM

Lu is not recursive.

Outline
•  18.1 Decision and Recognition Methods
•  18.2 The Language Lu
•  18.3 The Halting Problems
•  18.4 Reductions Proving a Language Is Recursive
•  18.5 Reductions Proving a Language is Not Recursive
•  18.6 Rice's Theorem
•  18.7 Enumerators
•  18.8 Recursively Enumerable Languages
•  18.9 Languages That Are Not RE
•  18.10 Language Classifications Revisited
•  18.11 Grammars and Comnputability
•  18.12 Oracles
•  18.13 Mathematical Uncomputabilities

Another Example

•  Consider this recognition method:

•  It defines an RE language…

/**
 * haltsRE(p,in) returns true if run(p,in) halts.
 * It just runs forever if run(p,in) runs forever.
 */
boolean haltsRE(String p, String in) {
 run(p,in);
 return true;
}

The Language Lh
•  Lh = L(haltsRE) = {(p,in) | p is a recognition method that halts on in}
•  (Remember h for halting)
•  A corresponding language for universal TMs:

 Lh = {m#x | m encodes a TM that halts on x}
•  We have a recognition method for it, so we know Lh is RE
•  Is it recursive?

Is Lh Recursive?
•  That is, is it possible to write a decision

method with this specification:

•  Just like the haltsRE method, but does not
run forever, even when run(p,in) would

/**
 * halts(p,in) returns true if run(p,in) halts, and
 * returns false if run(p,in) runs forever.
 */
boolean halts(String p, String in) {
 ...
}

More Bad News
•  From our results about Lu you might guess that Lh is

not going to be recursive either
•  Intuitively, the only way to tell what p will do when run

on n is to simulate it
•  If that runs forever, we won’t get an answer
•  But how do we know there isn’t some other way of

determining whether p halts, a way that doesn’t
involve actually running it?

•  Proof is by contradiction: assume Lh is recursive, so
an implementation of halts exists

•  The we can use it to implement…

narcissist

•  This halts (returning true) if and only if program p will contemplate itself forever
•  So L(narcissist) is the set of recognition methods that run forever, given

themselves as input
•  Recall:

–  /**
 * halts(p,in) returns true if run(p,in) halts, and
 * returns false if run(p,in) runs forever.
 */

/**
 * narcissist(p) returns true if run(p,p) would
 * run forever, and runs forever if run(p,p) would
 * halt.
 */
boolean narcissist(String p) {
 if (halts(p,p)) while(true) {}
 else return true;
}

Back to the Proof

•  We assumed by way of contradiction
that halts could be implemented

•  Using it, we showed an implementation
of narcissist

•  Now comes the tricky part: what
happens if we call narcissist, giving
it itself as input?

•  We can easily arrange to do this:

narcissist(
 "boolean narcissist(p) { " +
 " if (halts(p,p)) while(true) {} " +
 " else return true; " +
 "} "
)

Is narcissist a Narcissist?

•  Now consider:
–  halts(“narcissist…”,”narcissist…”) = true, but
–  narcissist(“narcissist…”) runs forever.
–  Contradiction

•  Or
–  halts(“narcissist…”,”narcissist…”) = false , but
–  narcissist(“narcissist…”) halts and returns true.
–  Contradiction

•  These are the only possible outcomes because halts is a decision
method by assumption.

Proof Summary

•  We assumed by way of contradiction that
halts could be implemented

•  Using it, we showed an implementation of
narcissist

•  We showed that applying narcissist to
itself results in a contradiction

•  By contradiction, no program satisfying the
specifications of halts exists

•  In other words…

Theorem 18.3

•  A classic undecidable problem: a halting problem
•  Many variations:

–  Does a program halt on a given input?
–  Does it halt on any input?
–  Does it halt on every input?

•  It would be nice to have a program that could check
over your code and warn you about all possible
infinite loops

•  Unfortunately, it is impossible: the halting problem in
all these variations, is undecidable

Lh is not recursive.

regular
languages

CFLs

L(a*b*)

{anbn}

recursive
languages

{anbncn}

Lu

Lh

The Picture So Far

•  The non-recursive languages don't stop there
•  There are uncountably many languages

beyond the computability border

