Chapter Eighteen:
Uncomputability

Review: Computability

A language is recursive if and only if it is L(M) of
some total TM M.

A function is (Turing) computable if and only if a total
TM computes it.

But we have:

— For every language L we can define a corresponding
function, suchasfix)=1ifx&€L,0ifx&L

— For every function f we can define a corresponding
language, such as L = {x#y | y = f(x)}
Therefore, L is recursive if and only if it is (Turing)
computable.

Church-Turing Thesis: Anything an Algorithm can do
a M can do, and vice versa.

The Church-Turing Thesis gives a definition of computability, like a
border surrounding the algorithmically solvable problems.

__________ L(a*b*)
&
.
languages
- — {anbncn}
CFLs &
recursive | ~==—-/——— {d"b"}

languages

Beyond that border is a wilderness of uncomputable problems. This
is one of the great revelations of twentieth-century mathematics: the
discovery of simple problems whose algorithmic solution would be
very useful but is forever beyond us.

Outline

18.1 Decision and Recognition Methods

18.2 The Language L,

18.3 The Halting Problems

18.4 Reductions Proving a Language Is Recursive
18.5 Reductions Proving a Language is Not Recursive
18.6 Rice's Theorem

18.7 Enumerators

18.8 Recursively Enumerable Languages

18.9 Languages That Are Not RE

18.10 Language Classifications Revisited

18.11 Grammars and Comnputability

18.12 Oracles

18.13 Mathematical Uncomputabilities

Switching To Java-Like
Syntax

In this chapter we switch from using Turing machines
to using a Java-like syntax

All the following ideas apply to any Turing-equivalent
formalism

Java-like syntax is easier to read than TMs

It is just a different way of stating an algorithm and we
know: for every algorithm we have a TM, and vice

versa (Church-Turing Thesis)
Note, this is not real Java; no limitations

In particular, no bounds on the length of a string or
the size of an integer

Decision Methods

Total TMs correspond to decision methods In
our Java-like notation

A decision method takes a String
parameter and returns a boolean value

Another way of saying computable: it always
returns, and does not run forever.

Example, {ax | x € Z*}.

boolean ax(String p) {
return (p.length()>0 && p.charAt(0)=='a');
}

Decision Method Examples

boolean emptySet (String p) {
- {}: return false;

}

. |poolean sigmaStar (String p) {
° X7 return true;

}

« As with TMs, the language accepted is L(m):
— L(emptySet) = {}
— L(sigmaStar) = X"

Recursive Languages

Previous definition: L is a recursive language if and
only if it is L(M) for some total TM M

New definition: L is a recursive language if and only if
it is L(m) for some decision method m

Recursive Language = (Turing) Decidable Language

Recognition Methods

* For methods that might run forever, a broader
term

* A recognition method takes a String
parameter and either returns a boolean value
or runs forever

* A decision method is a special kind of
recognition method, just as a total TM is a
special kind of TM

Recursively Enumerable
Languages

* Previous definition: L is a recursively
enumerable language if and only if it is L(M)
for some TM M

* New definition: L is a recursively enumerable
language if and only if it is L(m) for some
recognition method m

» Recursively Enumerable Language = (Turing)
Recognizable Language

{a"b"c"} Recognition Method

boolean anbncnl (String p) {
String as = "", bs ="", ecs = "";
while (true) {
String s = as+tbs+cs;
if (p.equals(s)) return true;
as += 'a'; bs += 'b'; ¢cs += 'c¢';

}
}

Highly inefficient, but we don’ t care about that

We do care about termination; this recognition
method loops forever if the string is not accepted

It demonstrates only that {a"b"c"} is RE; we know it is
recursive, so there is a decision method for it...

{a"b"c"} Decision Method

boolean anbncn2 (String p) {
String as = "", bs ="", ecs = "";
while (true) {
String s = as+tbs+cs;
if (s.length()>p.length()) return false;
else if (p.equals(s)) return true;
as += 'a'; bs += 'b'; ¢cs += 'c¢';
}
}

 [(anbncnl) = [(anbncn2) = {a"b"c"}
 But anbnen2 is a decision method, showing
that the language is recursive and not just RE

Universal Java Machine

* A universal TM performs a simulation to decide
whether the given TM accepts the given string

 ltis possible to implement the same kind of thing in
Java; a run method like this:

/**

run(p, in) takes a String ‘© which is the text

of a recognition method, and a String ‘in’ which is
the input for that method. We compile the method,
run it on the given parameter string, and return
whatever result it returns. (If it does not
return, neither do we.)

* ok ok ok F o*

*/
boolean run(String p, String in) {
// don’ t care about the details here

run Examples

« sigmaStar ("abc") returns true, so the run in this fragment
would return true:

String s = "boolean sigmaStar (String p) {return true;}";
run (s, "abc") ;

« ax("ba") returns false, so the run in this fragment would
return false:

String s =
"boolean ax(String p) { "4
" return (p.length()>0 && p.charAt(0)=='a'); " +

"} " .
4

run (s, "ba") ;

run Examples, Continued

« anbncnl ("abbe") runs forever, so the run
in this fragment would never return:

String s =
"boolean anbncnl (String p) { "
" String as = \"\", bs = \"\", cs = \"\"; "
" while (true) { "
" String s = as+t+bs+cs; "
" if (p.equals(s)) return true; "
" as += 'a'; bs += 'b'; ¢cs += 'c¢'; "
1A } 1A
"} "

run (s, "abbe") ;

+ + + 4+ + + +

< ‘run’ is a recognition method!

Outline

18.1 Decision and Recognition Methods

18.2 The Language L,

18.3 The Halting Problems

18.4 Reductions Proving a Language Is Recursive
18.5 Reductions Proving a Language is Not Recursive
18.6 Rice's Theorem

18.7 Enumerators

18.8 Recursively Enumerable Languages

18.9 Languages That Are Not RE

18.10 Language Classifications Revisited

18.11 Grammars and Comnputability

18.12 Oracles

18.13 Mathematical Uncomputabilities

The Perils Of Infinite
—— Computation

for (int i = 0; i < 100; j++) {
j += £(1);
}

You run a program, and wait... and wait...

You ask, “Is this stuck in an infinite loop, or is it just
taking a long time?”

No sure way for a person to answer such questions

No sure way for a computer to find the answer for
you...

The Language L,

L,=L(xrun) = {(p,in)| pis a recognition method and in € L(p)}
(Remember u for universal)

A corresponding language for universal TMs:
L,={m#x| mencodes a TM and x is a string it accepts}

We have a recognition method for it, so we know L, is RE
s it recursive?

Is L, Recursive?

 Thatis, is it possible to write a decision
method with this specification:

/**
* shortcut(p,in) returns true if run(p,in) would

* return true, and returns false if run(p,in)
* would return false or run forever.

*/
boolean shortcut(String p, String in) {

}

 Just like the run method, but does not run
forever, even when run (p,in) would

Example

* For example, the shortcut in this fragment:

String x =
"boolean anbncnl (String p) { "
" String as = \"\", bs = \"\", es = \"\"; "
" while (true) { "
" String s = as+bs+cs; "
" if (p.equals(s)) return true; "
" as += 'a'; bs += 'b'; ¢cs += 'c¢'; "
1A } 1]
"} "

shortcut (x, "abbc")

+ 4+ + + + + +

* |t would return false, even though
anbncnl ("in") would run forever

Is This Possible?

Presumably, shortcut would have to simulate the
Input program as run does

But it would have to detect infinite loops

Some are easy enough to detect:
while (true) {}

A program might even be clever enough to reason
about the nontermination of anbnenl

It would be very useful to have a debugging tool that
could reliably alert you to infinite computations

The Bad News

* No such shortcut method exists and
we can prove it!

* Qur proof is by contradiction:

— Assume by way of contradiction that L, is
recursive, so some implementation of
shortcut exists

— Then we could use it to implement this...

nonSelfAccepting

/**

* nonSelfAccepting(p) returns false if run(p,p)
* would return true, and returns true if run(p,p)
* would return false or run forever.
*/
boolean nonSelfAccepting(String p) {
return !shortcut(p,p):

}

* This determines what the given program would
decide, given itself as input, then it returns the
opposite

S0 L(nonSelfAccepting)is the set of recognition
methods that do not accept themselves

nonSelfAccepting
Example

nonSelfAccepting (
"boolean sigmaStar (String p) {return true;}"

) ;

e sigmaStar ("boolean sigmaStar..")
returns true: sigmaStar accepts everything,

so it certainly accepts itself

« S0 it is self-accepting, and
nonSelfAccepting returns false

nonSelfAccepting

Example
nonSelfAccepting (

"boolean ax(String p) {
return (p.length()>0 && p.charAt(0)=='a');

"}

+ +

« ax ("boolean ax..") returns false: ax
accepts everything starting with a, but its own
source code starts with b

« So it is not self-accepting, and
nonSelfAccepting returns true

Back to the Proof

We assumed by way of contradiction that
shortcut could be implemented

Using it, we showed an implementation of
nonSelfAccepting

Now comes the tricky part: what happens if
we call nonSelfAccepting, giving it itself
as input?

We can easily arrange to do this:

Does nonSelfAccepting
Accept Itself?

boolean nonSelfAccepting(String p) {
return !'shortcut(p,p);

};

String s = "boolean nonSelfAccepting(p) { " +
" return !shortcut(p,p):; "o+

»”

"} ;
nonSelfAccepting(s) ;

Now consider:
— shortcut(“nonSelfAccepting...”,”nonSelfAccepting...”) = true, but
— nonSelfAccepting(“nonSelfAccepting...”) = false
— Contradiction, not possible

Or
— shortcut(“nonSelfAccepting...”,”nonSelfAccepting...”) = false, but
— nonSelfAccepting(“nonSelfAccepting...”) = true
— Contradiction, not possible

These are the only two outcomes because shortcut is a decision method by
assumption.

Proof Summary

We assumed by way of contradiction that shortcut
could be implemented

Using it, we showed an implementation of
nonSelfAccepting

We showed that applying nonSelfAccepting to
itself results in a contradiction

By contradiction, no program satisfying the
specifications of shortcut exists

In other words...

Theorem 18.2

L, is not recursive.

« Our first example of a problem that is outside the
borders of computability:
— L, is not recursive
— The shortcut function is not computable
— The machine-M-accepts-string-x property is not decidable

« This implies: No total TM can be a universal TM

Outline

18.1 Decision and Recognition Methods

18.2 The Language L,

18.3 The Halting Problems

18.4 Reductions Proving a Language Is Recursive
18.5 Reductions Proving a Language is Not Recursive
18.6 Rice's Theorem

18.7 Enumerators

18.8 Recursively Enumerable Languages

18.9 Languages That Are Not RE

18.10 Language Classifications Revisited

18.11 Grammars and Comnputability

18.12 Oracles

18.13 Mathematical Uncomputabilities

Another Example

» Consider this recognition method:

AL
* haltsRE (p,in) returns true if run(p,in) halts.
* It just runs forever if run(p,in) runs forever.
*/

boolean haltsRE (String p, String in) {
run(p,in);
return true;

}

|t defines an RE language...

The Language L,

L, =L(haltsRE) = {(p,in) | p is a recognition method that halts on in}
(Remember h for halting)

A corresponding language for universal TMs:
L, ={m#x| m encodes a TM that halts on x}

We have a recognition method for it, so we know L, is RE
Is it recursive?

Is L, Recursive?

 That s, is it possible to write a decision
method with this specification:

AL
* halts(p,in) returns true if run(p,in) halts, and
* returns false if run(p,in) runs forever.

*/
boolean halts(String p, String in) {

}

« Just like the haltsRE method, but does not
run forever, even when run (p, in) would

More Bad News

From our results about L, you might guess that L, is
not going to be recursive either

Intuitively, the only way to tell what p will do when run
on n is to simulate it

If that runs forever, we won’ t get an answer

But how do we know there isn’ t some other way of
determining whether p halts, a way that doesn’ t
involve actually running it?

Proof is by contradiction: assume L, is recursive, so
an implementation of halts exists

The we can use it to implement...

narcissist

/**

* narcissist(p) returns true if run(p,p) would

* run forever, and runs forever if run(p,p) would
* halt.

*/

boolean narcissist(String p) {
if (halts(p,p)) while(true) {}
else return true;

This halts (returning true) if and only if program p will contemplate itself forever

So L(narcissist) is the set of recognition methods that run forever, given
themselves as input

Recall:

— [kx
* halts(p,in) returns true if run(p,in) halts, and
* returns false if run(p,in) runs forever.

*/

Back to the Proof

We assumed by way of contradiction
that halts could be implemented

Using it, we showed an implementation
of narcissist

Now comes the tricky part: what

happens if we call narcissist, giving
it itself as input?

We can easily arrange to do this:

IS narcissist a Narcissist?

narcissist(

"boolean narcissist(p) { "+
" if (halts(p,p)) while(true) {} " +
" else return true; "+
" } 11}
)

 Now consider:

— halts(“narcissist...”,"narcissist...”) = true, but

— narcissist(“narcissist...”) runs forever.

— Contradiction
« Or

— halts(“narcissist...”,”narcissist...”) = false , but

— narcissist(“narcissist...”) halts and returns true.
— Contradiction

 These are the only possible outcomes because halts is a decision
method by assumption.

Proof Summary

We assumed by way of contradiction that
halts could be implemented

Using it, we showed an implementation of
narcissist

We showed that applying narcissist to
itself results in a contradiction

By contradiction, no program satisfying the
specifications of halts exists

In other words...

Theorem 18.3

L, is not recursive.

A classic undecidable problem: a halting problem

Many variations:

— Does a program halt on a given input?
— Does it halt on any input?

— Does it halt on every input?

It would be nice to have a program that could check
over your code and warn you about all possible
infinite loops

Unfortunately, it is impossible: the halting problem in
all these variations, is undecidable

The Picture So Far

Jp——— L(a*b*)

/
/
/
/
/
regular o 4
languages

________ Lu
CFLs oo Ly
4
. \
recursive
languages
———————— {d"b"c"}

* The non-recursive languages don't stop there

* There are uncountably many languages
beyond the computability border

