
Representing Data

Data with n independent real-valued attributes can be represented in n-dimensional real
space.

Height Weight Age Gender

Jane 25.4 32.7 2.5 F

Amanda 65.2 132.0 36.5 F

Paul 71.7 175.1 25.5 M

Mary 62.6 126.0 31.0 F

Gary 68.2 182.0 42.5 M

Betty 58.5 118.5 21.0 F

John 72.0 195.2 45.2 M
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Linear Algebra

Linear algebra allows us to describe structures in n-dimensional spaces very effectively.

The representation of the models in support vector machines draw heavily on concepts
such as vector spaces, planes, and norms from linear algebra.

We start with the most basic definition:

Definition: A directed line segment is called a vector. A vector has both a length and a
direction. The length is sometimes called the Euclidean norm or magnitude. A vector of
length 1 is called a unit vector.

A special case of vector is the position vector:

Definition: A position vector is a vector whose initial point is the origin of some coordinate
system and whose terminal point is described by a set of coordinates in the coordinate
system.
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Position Vectors
Our data set revisited:

Height Weight Age Gender

Jane 25.4 32.7 2.5 F

Amanda 65.2 132.0 36.5 F

Paul 71.7 175.1 25.5 M

Mary 62.6 126.0 31.0 F

Gary 68.2 182.0 42.5 M

Betty 58.5 118.5 21.0 F

John 72.0 195.2 45.2 M
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Example: The position vector for Betty starts at (0, 0, 0) and ends at (58.5, 118.5, 21.0)
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Vector Operations
Vector operations such as equality, addition, and scalar multiplication are
componentwise.

Example: Let a = (a1, a2, a3) and b = (b1, b2, b3) be position vectors, then

a = b iff a1 = b1, a2 = b2, a3 = b3.

This gives rise to identities such as

a + b = b + a (commutativity)

(a + b) + c = a + (b + c) (associativity)

a + 0 = 0 + a = a (identity)

a + (−a) = 0 (reciprocal)

Where a,b, and c are position vectors. Furthermore, 0 = (0, 0, . . . , 0) = 0n is the null
vector and (−a) is the vector (−a1,−a2, . . . ,−an) = −1 × a.
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More Identities

q(a + b) = qa + qb (distributivity)

(p + q)a = pa + qa (distributivity)

p(qa) = (pq)a (associativity)

1a = a (identity)

0a = 0

q0 = 0

(−1)a = −a
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Vector Spaces

Informally we say that a vector space is a collection of vector sthat can be added and
scaled. More formally,

Definition: A non-empty set V of vectors in R
n is called a (real) vector space if vector

addition and scalar multiplication are defined and closed over this set and satisfy the
following axioms for all a, b, c ∈ V and p, q ∈ R.
Addition:

a + b = b + a

(a + b) + c = a + (b + c)

a + 0 = a

a + (−a) = 0

Multiplication:

q(a + b) = qa + qb

(p + q)a = pa + qa

p(qa) = (pq)a

1a = a
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Linear Combinations
We can use addition and multiplication in a vector space to construct new vectors from
given ones.

Example: Let a1, a2, . . . ,am be vectors in some vector space V , then an expression of
the form

mX
i=1

qiai = q1a1 + . . . + qmam,

where qi ∈ R, is called a linear combination and the closure property of vector spaces
guarantees that

Pm
i=1 qiai ∈ V .
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Linear Combinations
An important example of linear combinations is the formal notion of dimensionality of a
data set.

Example: Let the unit vectors ı = (1, 0, 0),  = (0, 1, 0), and k = (0, 0, 1) be linearly
independent vectors, then we can view them as the canonical basis of R

3, that is, any
vector in R

3 can be represented as a linear combination of these three vectors.

Example: Consider the position vector for Amanda. We can rewrite it as,

(65.2, 132.0, 36.5) = 65.2(1, 0, 0) + 132.0(0, 1, 0) + 36.5(0, 0, 1).

Observation: The real space R
n can always be considered a vector space.
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The Dot Product
Definition: Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in an n-dimensional
vector space V , then we define the dot product as the operation

a • b = a1b1 + . . . + anbn (1)

or

a • b = |a||b| cos γ, (2)

where |a| =
q

a2
1 + . . . + a2

n is the length of vector a and γ is the angle between the two

position vectors.

The following identities hold for dot products. Let a, b, c ∈ V and p, q ∈ R, then

(pa + qb) • c = pa • c + qb • c (linearity)

a • b = b • a (symmetry)

a • a ≥ 0, and

a • a = 0 iff a = 0 (positive-definiteness)
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The Dot Product
We also have the following interesting identities that are not as fundamental as the
previous set but very useful:

|a| =
√

a • a,

cos γ =
a • a

|a||b| .

So what does this mean? What is the intuition behind the dot product?

The dot product is a measure of similarity.

Consider the second equation above with k = |a||b|, then a • b = k cos γ and we see that
the value of the dot product is proportional to the cosine of the angle between them:
0◦ �→ k, 90◦ �→ 0, 180◦ �→ −k, etc.

+1

-1

0º 90º 180º
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Dot Product Spaces

Definition: A dot product space is a vector space where dot products are defined.

That is, given any two vectors in the vector space we can measure their similarity.

Definition: Two non-zero length vectors are orthogonal if and only if their dot product is
zero (maximum dissimilarity).

Observation: The real space R
n can always be considered a dot product space.
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Lines & Dot Products
We can represent functions using dot products, all of the following identities describe the
same set of points:

f(x) = −mx

y = −mx

mx + y = 0

w1x + w2y = 0, where w1 = m, w2 = 1

w • x = 0, where w = (w1, w2) and x = (x, y)

Note: an advantage of the dot product notation of the last identity is that dimensionality is
implicit rather than explicit as in the other identities allowing us to describe planes and
hyperplanes with very compact notation.

Note: the vectors w and x are orthogonal, and since x describes a line (hyperplane) we
call w the normal vector of the line (hyperplane).
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Lines & Dot Products
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Lines & Dot Products
We can generalize the above expression a little bit by admitting lines that do not have to
go through the origin of the coordinate system:

w • x = b

where w = (w1, w2) and x = (x, y).

The constant b
w2

is called the the y-intercept.

{{{{{{
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Hyperplanes

We can generalize this even further by admitting arbitrary dimensions n > 2 such that
w = (w1, . . . , wn) and x = (x1, . . . , xn).

The dot product notation itself does not change

w • x = b

This equation defines a hyperplane in n-dimensional space.
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Hyperplanes

It is difficult to draw hyperplanes, for n = 3 hyperplanes degenerate into the well known
3-dimensional plane.

Example: Let w = (w1, w2, w3) and x = (x, y, z), then

{{{{{{{{
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