Maximum Margin
Classifiers

Proposition: (Maximum Margin Classifier) Given a linearly separable
training set

D = {(71,y1), (®2,y2),---, (T, y1)} € R™ x {+1, -1},

we can compute a maximum margin decision surface w* e T = b* with
an optimization,
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subject to the constraints,

we (y;x;) >1+yb forall (z;,y;) € D.
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Convex Optimization

Our objective function is convex,
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Quadratic
Programming - QP

A quadratic program is a general convex optimization problem of the form

1
w* = argmin (EETQ w — q.w) :

w

subject to the constraints
XTw > e

Here, Q is an n x n matrix, X is an [ x n matrix, the vectors w*, w, g are n-dimensional
vectors, and the vector ¢ is an [-dimensional vector. @

In software packages this is usually given as function of the form,

w = solve(Q,q, X, ).

4| have written the quadratic program in termsefin the literature a different letter would typically be dder the optimization
variable.
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Quadratic
Programming - QP

In order to bring the generalized quadratic program into a form that we can use for our
maximum margin optimization we let

Q=1L

and

then
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Quadratic
Programming

QP

Next, let us look at the original constraints,
(yiT;) @w > 1 + y;b,

forall (Z;,y;) € Dwithi=1,...,landT; = (x ...,z7).

We have to rewrite these into the matrix form,

XTw > ¢,
with
( 1—|—y1b\
ylx% .« . yza;';l: o o ylx;‘ 1—|—y2b
X = €=
yiah Yzl Y] \ 1+ ub )

Observation: b is now a free variable in the optimization problem, its value is not

computed by the optimization algorithm but must be set by the user. -



Quadratic
Programming - QP

Proposition: (Quadratic Programming) Given a linearly separable train-
ing set

D = {(71,91), (®2,¥2), .-, (T, 1)} € R™ x {+1, -1},

then we can compute a maximum margin decision surface w* e x =
b* with a quadratic programming approach that solves the generalized
optimization problem,

— % * . 1_T J— — J—

(w*,b*) =argmin [ —w" QW —qew |,

W, b 2
subject to the constraints
XTw > ¢,

with Q = I, g = 0, and where X, and ¢ are constructed according to the
previous discussion.
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QP - Algorithm

let D = {(Z1,y1), (T2,92), .-, (T, y)} CTR™ x {+1, -1}
r — max{[z| | (Z,y) € D}
qg <— 1000
let w™ andb™ be undefined
constructX
for each b € [—q, q] do
constructe
w «— solve(I, 0, X, ¢)
if (w is definedand w™ is undefinedl or
(w is definedand |w| < |w|*) then
W —w
b* — b
end if
end for
if w™ is undefinedhen stop constraints not satisfiable
elseif |w|™ > ¢q/r then stop bounding assumption d¢fv| violated
end if

return (w™, b™)
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QP - Example

Let

D = {((17 6)7 _1)7 ((37 7)7 _1)7 ((174)7 +1)7 ((27 1)7 +1)}

be the training set and let
w = solve(Q,7q, X, ),

be a call to the solver, then

S
-1 -3 1 2 -_ | 10
X =
—6 -7 4 1 1+5b
g | 1406 |
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QP - Free Parameter

Observation: Our optimization problem has a free parameter, the offset term b. Notice
also that the constraints are dependent on this term. That is we need to pick b in such a
way that the constraints are consistent. In other words, we need to pick b in such a way
that the quadratic solver can actually find a minimum w.

What are reasonable values for b to try?
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QP - Free Parameter

First observation,

b=wex
(=1 < cosvy < 1,for all ~)
(Jz] < 7)

b = |w||x| cosy
[l < b < [l
—[wlr <b< |wlr =

¢ 44

Second observation, 2r is the size of the largest margin and w is unbounded,

2 1 L

— <2r= - < |w|
[w| T

Third observation, we bound w,

L
- < |w| <
T 7

Finally, we use w = ¢/r in the equation above,

—|wl|r <b < |wlr = —q<b<gq
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