
Support Vector
Machines

Support vector machines can be viewed as the dual to maximum margin classifiers.

Maximum margin classifiers represent optimization problems with the maximum
margin between the supporting hyperplanes as the optimization criterion.

A particularly convenient technique to derive the dual of an optimization problem is a
technique referred as the Lagrangian dual.
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Lagrangian
Optimization

Assume that we have a primal optimization problem of the form,

min
x

φ(x),

such that

gi(x) ≥ 0,

for all x ∈ R
n with i = 1, . . . , l. Here we assume that φ is a convex objective function and we also

assume that the constraints gi are linear.

We can construct the Lagrangian optimization problem as follows,

max
α

min
x

L(α, x) = max
α

min
x

 
φ(x) −

lX
i=1

αigi(x)

!
,

such that

αi ≥ 0,

for i = 1, . . . , l and x ∈ R
n.
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Lagrangian
Optimization

Observations:

The new objective function L(α, x) is called the Lagrangian and incorporates the
original objective function φ together with a linear combination of the constraints g i.

The values α1, . . . , αl are called the Lagrangian multipliers.

We call x the primal variable and α the dual variable.

This newly derived optimization problem has the unusual feature of two nested
optimization operators with opposing optimization objectives.

– p. 3/1



Lagrangian
Optimization

We have

max
α

min
x

L(α, x) = max
α

min
x

 
φ(x) −

lX
i=1

αigi(x)

!
,

now let x = x∗ be an optimum then

max
α

L(α, x∗) = max
α

 
φ(x∗) −

lX
i=1

αigi(x
∗)

!
,

now let α = α∗ be an optimum then

min
x

L(α∗, x) = min
x

 
φ(x) −

lX
i=1

α∗
i gi(x)

!
.

This implies that our solutions are saddle points on the graph of the function L(α, x).

– p. 4/1



Saddle Point

0
0
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Lagrangian
Optimization

An important observation is that at the saddle point the identity

∂L

∂x
= 0,

has to hold.

This gives us the important identity

∂L

∂x
(α, x∗) = 0.

Here, the point x∗ represents an optimum of L with respect to x.
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Lagrangian
Optimization

This allows us to formulate our first major result in Lagrangian optimization theory. Let α∗ and x∗ be
a solution to the Lagrangian such that,

max
α

min
x

L(α, x) = L(α∗, x∗) = φ(x∗) −
lX

i=1

α∗
i gi(x

∗),

then x∗ is a solution to the primal objective function if and only if the following conditions hold,

∂L

∂x
(α

∗
, x

∗
) = 0,

α∗
i gi(x

∗) = 0,

gi(x
∗) ≥ 0,

α∗
i ≥ 0,

for i = 1, . . . , l.

These conditions are collectively referred to as the Karush-Kuhn-Tucker (KKT) conditions and if
satisfied ensure that

L(α
∗
, x

∗
) = φ(x

∗
). (Why?)

NOTE: The KKT conditions are always satisfied for convex optimization problems!
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Lagrangian Dual
Now let x∗ be an optimum, that is,

∂L

∂x
(α, x

∗
) = 0,

then we can rewrite our Lagrangian as an objective function of only the dual variable,

L(α, x
∗
) = φ

′
(α).

We call the function φ′ the Lagrangian dual.

This gives us our new, dual optimization problem

max
α

φ
′
(α),

subject to

αi ≥ 0,

for i = 1, . . . , l.

NOTE: Observe that

max
α

φ
′
(α) = φ

′
(α

∗
) = L(α

∗
, x

∗
) = φ(x

∗
),

if the KKT conditions are satisfied.
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An Example
Consider the convex optimization problem,

min φ(x) = min
1

2
x
2
,

subject to the linear constraint

g(x) = x − 2 ≥ 0,

with x ∈ R.
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An Example

In order to solve this optimization problem using the Lagrangian dual we first construct
the Lagrangian,

L(α, x) =
1

2
x2 − α(x − 2).

As expected for a convex objective function we have a unique saddle point in the graph
of the Lagrangian,

0
0
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An Example
We know that this saddle point has to occur where the gradient of the Lagrangian with respect to the
variable x is equal to zero,

∂L

∂x
(α, x

∗
) = x

∗ − α = 0.

Solving for x∗ gives us,

x∗ = α.

Now, plugging this identity back into the Lagrangian gives us,

L(α, x
∗
) =

1

2
α

2 − α
2

+ 2α = 2α − 1

2
α

2
.

This Lagrangian has no longer any dependencies on the variable x and therefore we can rewrite this
as the Lagrangian dual with φ′(α) = L(α, x∗) or,

max
α

φ′(α) = max
α

„
2α − 1

2
α2
«

subject to

α ≥ 0.
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An Example

Now we know that L(α, x) is convex, therefore φ′(α∗) = maxα φ′(α) implies that

dφ′

dα
(α∗) = 2 − α∗ = 0.

This means that,

x∗ = α∗ = 2,

as required by our observation of the primal optimization problem.

Formally we can show that the solution to the primal optimization problem and to the
Lagrangian dual must coincide by showing that that the second KKT condition is
satisfied,

α∗g(x∗) = α∗(x∗ − 2) = 2(2 − 2) = 0.
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