
Dual Maximum Margin
Optimization

Observations:

Support vector machines can be viewed as the dual to maximum margin classifiers.

We derive this dual representation using Lagrangian optimization theory.
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Assume that we are given a linearly separable training set of the following form,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1,−1},

then recall our primal maximum margin optimization problem,

min
w,b

φ(w, b) = min
w,b

1

2
w • w,

subject to the constraints,

gi(w, b) = yi(w • xi − b) − 1 ≥ 0,

for i = 1, . . . , l.

The constraints are rewritten in a form amenable for the Lagrangian objective function.
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We construct the corresponding Lagrangian as,

L(α, w, b) = φ(w, b) −
l

X

i=1

αigi(w, b)

=
1

2
w • w −

l
X

i=1

αi(yi(w • xi − b) − 1)

=
1

2
w • w −

l
X

i=1

αiyiw • xi + b

l
X

i=1

αiyi +
l

X

i=1

αi.

This gives us the Lagrangian optimization problem for maximum margin classifiers,

max
α

min
w,b

L(α, w, b),

subject to,

αi ≥ 0,

for i = 1, . . . , l.
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Now, let α∗, w∗, and b∗ be a solution to the Lagrangian optimization problem such that,

max
α

min
w,b

L(α, w, b) = L(α∗, w∗, b∗).

But,

φ is convex

the constraints gi are linear

this implies that the solution α∗, w∗ and b∗ will satisfy the following KKT conditions,

∂L

∂w
(α∗, w∗, b∗) = 0,

∂L

∂b
(α∗, w∗, b∗) = 0,

α∗
i (yi(w

∗ • xi − b∗) − 1) = 0,

yi(w
∗ • xi − b∗) − 1 ≥ 0,

α∗
i ≥ 0,

for i = 1, . . . , l. – p. 4/12
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Of particular interest is of course the third condition,

α∗
i (yi(w

∗ • xi − b∗) − 1) = 0,

the complimentarity condition, because it assures the existence of a solution to our
primal maximum margin optimization problem,

max
α

min
w,b

L(α, w, b) = L(α∗, w∗, b∗)

=
1

2
w∗ • w∗ −

l
X

i=1

α∗
i (yi(w

∗ • xi − b∗) − 1)

=
1

2
w∗ • w∗

= φ(w∗, b∗).
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As in our simple, one dimensional example we want to solve the Lagrangian optimization problem by
constructing and solving the Lagrangian dual.

In order to accomplish this we first construct expressions for the optima of the primal variables at the
saddle point. We know that they exist because of the KKT conditions. Therefore,

∂L

∂w
(α, w

∗

, b) = w
∗

−

l
X

i=1

αiyixi = 0.

It follows that,

w
∗

=

l
X

i=1

αiyixi.

And also,

∂L

∂b
(α, w, b

∗) =

l
X

i=1

αiyi = 0,

giving rise to the constraint
l

X

i=1

αiyi = 0,

that needs to hold at the saddle point.
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Observation: No expression for b∗!

However, we can recover an expression for b∗ from the structure of the data set.

+

-

-

-

-

-

+

+

b
+

= w
∗

• xp

or computationally,

b
+

= min{w
∗

• x | (x, y) ∈ D with y = +1}

b
− = w

∗ • xq

again computationally,

b
− = max{w

∗ • x | (x, y) ∈ D with y = −1}
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Now, the decision surface with b∗ as an offset sits right in the middle of the margin
between the two supporting hyperplanes, therefore

b∗ =
b+ + b−

2
.
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We are now ready to construct our Lagrangian dual,

φ′(α) = L(α, w∗, b∗) =
l

X

i=1

αi −
1

2

l
X

i=1

l
X

j=1

αiαjyiyjxi • xj ,

by applying the identity for w∗ and the newly found constraint to the Lagrangian.
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Proposition: (The Maximum Margin Lagrangian Dual) Given the primal
maximum margin optimization, a then the Lagrangian dual optimization
for maximum margin classifiers is

max
α

φ′(α) = max
α

0

@

l
X

i=1

αi −
1

2

l
X

i=1

l
X

j=1

αiαjyiyjxi • xj

1

A ,

subject to the constraints

l
X

i=1

αiyi = 0,

αi ≥ 0,

with i = 1, . . . , l.

aSee lecture notes on maximum margin classifiers.
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Given a solution α∗ to the Lagrangian dual optimization, then the KKT complementarity condition can
only be satisfied for each i = 1, . . . , l if either α∗

i = 0 or yi(w
∗ • xi − b∗) − 1 = 0.

If we consider α∗

j > 0 for some point (xj , yj) ∈ D, then in order to satisfy the complementarity
condition we have yj(w

∗ • xj − b∗) − 1 = 0 or,

w
∗

• xj = b
∗

+ 1 if yj = +1,

w
∗

• xj = b
∗

− 1 if yj = −1.

That is, the point (xj , yj) lies on one of the supporting hyperplanes! It is a constraint!

Now consider α∗

j = 0 for some point (xj , yj) ∈ D. That is, the point xj is a point that does not lie in
the vicinity of the class boundary because we have yj(w

∗ • xj − b∗) − 1 > 0 or,

w
∗

• xj > b
∗

+ 1 if yj = +1,

w
∗

• xj < b
∗

− 1 if yj = −1.

This implies that points with zero-valued Lagrangian multipliers do not constrain the size of the
margin.

Points with non-zero Lagrangian multipliers are support vectors!
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This gives us the following insight,

The primal maximum margin optimization computes the supporting hy-
perplanes whose margin is limited by support vectors. The dual max-
imum margin optimization computes the support vectors that limit the
size of the margin of the supporting hyperplanes.

+

+

+

-

-

-

+

-

-

-

-{margin

optimal decisio
n surface

supporting

hyperplanes
support

vector

support

vectors
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