
Non-Linear SVMs

The linearity assumption on the training data is a very strong assumption.

Not many real-world data sets are linearly separable and therefore our current
setting is somewhat unrealistic.

Turns out that the linear setting of SVMs can easily be extended to the non-linear
setting by considering kernel functions.
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A Non-Linear Data
Set
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Here the figure a) represents a non-linear data set in our input space R
2:

There exists no linear decision surface w • x = b that would separate this data.

The non-linear decision surface x • x = 1 does separate the data.

Now, instead of computing a classification model in the input space, we first map our data set into a
higher dimensional feature space and then compute the model,

f̂(x) = sign (w • Φ(x) − b) ,

with Φ : R
2 → R

3 and

Φ(x) = Φ(x1, x2) = (x
2
1, x

2
2,

√
2x1x2).
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A Non-Linear Data
Set

Observations:

The mapping Φ maps our 2-D input space into a 3-D feature space.

The mapping Φ converts our non-linear classification problem into a linear
classification problem.

It can be shown that all the points within the circle in input space are below the linear
decision surface in feature space and all the points outside of the circle in input
space are above the linear decision surface in feature space.

We have just constructed a non-linear decision function!
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A Non-Linear
Decision Function

Given our data set and Φ we can construct a decision function that separates the
non-linear data set,

f̂(x) = sign (w∗ • Φ(x) − b∗) .

with w∗ = (w∗
1 , w∗

2 , w∗
3) = (1, 1, 0) and b∗ = 1.

It is perhaps revealing to study this decision function in more detail,

f̂(x) = sign (w∗ • Φ(x) − b∗)

= sign
“
w∗

1x2
1 + w∗

2x2
2 + w∗

3

√
2x1x2 − b∗

”

= sign

 
3X

i=1

w∗
i zi − b∗

!
,

where Φ(x) = Φ(x1, x2) = (z1, z2, z3) = z.

We obtain a decision surface in feature space whose complexity depends on the number
of dimensions of the feature space.
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A Non-Linear
Decision Function

We can expect that the more complex the non-linear decision surface is in the input space, the more
complex the linear decision surface in feature space (the larger d),

f̂(x) = sign

 
dX

i=1

w
∗
i zi − b

∗
!

.

But, now consider the dual representation of w∗,

w∗ =
lX

i=1

α∗
i yiΦ(xi),

then,

f̂(x) = sign

 
dX

i=1

w
∗
i zi − b

∗
!

= sign
`
w∗ • z − b∗

´
= sign

`
w

∗ • Φ(x) − b
∗´

= sign

 
lX

i=1

α
∗
i yiΦ(xi) • Φ(x) − b

∗
!

.
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Kernel Functions
Observations:

We have reduced the problem from a problem in terms of feature space
dimensionality to a problem that depends on the number of support vectors.

Functions of the form Φ(x) • Φ(y) are called kernel functions.

In our particular case we have Φ(x) • Φ(y) = (x • y)2, that is the computation in
feature space reduces to a computation in input space. (convince yourself of this)
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Kernel Functions
If we let k(x, y) = Φ(x) • Φ(y) be a kernel function, then we can write our support vector machine
in terms of kernels,

f̂(x) = sign

 
lX

i=1

α
∗
i yiΦ(xi) • Φ(x) − b

∗
!

= sign

 
lX

i=1

α∗
i yik(xi, x) − b∗

!

We can apply the same kind of reasoning to b∗ which is the offset term in feature space,

b
∗

=

lX
i=1

α
∗
i yiΦ(xi) • Φ(xsv+ ) − 1

=

lX
i=1

α
∗
i yik(xi, xsv+ ) − 1

This means, that the support vector machine in feature space is completely determined by the
support vectors and an appropriate kernel function.

The fact that we are free to choose any kernel function for our model is called the kernel trick.
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Kernel Functions

Kernel Name Kernel Function Free Parameters

Linear Kernel k(x, y) = x • y none

Homogeneous Polynomial Kernel k(x, y) = (x • y)d d ≥ 2

Non-Homogeneous Polynomial Kernel k(x, y) = (x • y + c)d d ≥ 2, c > 0

Gaussian Kernel k(x, y) = e
− |x−y|2

2σ2 σ > 0
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