
Kernel Functions
If we let k(x, y) = Φ(x) • Φ(y) be a kernel function, then we can write our support vector machine
in terms of kernels,
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We can write our training algorithm in terms of kernel functions as well,
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subject to the constraints,
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αi ≥ 0, i = 1, . . . , l.

Selecting the right kernel for a particular non-linear classification problem is called feature search.
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Kernel Functions

Kernel Name Kernel Function Free Parameters

Linear Kernel k(x, y) = x • y none

Homogeneous Polynomial Kernel k(x, y) = (x • y)d d ≥ 2

Non-Homogeneous Polynomial Kernel k(x, y) = (x • y + c)d d ≥ 2, c > 0

Gaussian Kernel k(x, y) = e
−

|x−y|2

2σ2 σ > 0
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Non-linear Classifiers
Let’s review classification with non-linear SVMs:

1. We have a non-linear data set.

2. Pick a kernel other than the linear kernel, this means that the input space will be
transformed into a higher dimensional feature space.

3. Solve our dual maximum margin problem in the feature space (we are solving now a
linear classification problem).

4. The resulting model is a linear model in feature space and a non-linear model in
input space.
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A Closer Look at
Kernels

We have shown that for Φ(x1, x2) = (x2

1
, x2

2
,
√

2x1x2) the kernel

k(x, y) = Φ(x) • Φ(y) = (x • y)2.

That is, we picked our mapping from input space into feature space in such a way that
the kernel in feature space can be evaluated in input space.

This begs the question: What about the other kernels? What do the associated feature
spaces and mappings look like?

It turns out that for each kernel function we can construct a canonical feature space and
mapping. This implies that features spaces and mappings for kernels are not unique!
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Properties of Kernels

Definition: [Positive Definite Kernel] A function k : R
n × R

n → R such that

l
X
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θiθjk(xi, xj) ≥ 0

holds is called a positive definite kernel. Here, θi, θj ∈ R and x1, . . . , xl is a set
of points in R

n.

– p. 5/7



Properties of Kernels
New notation: Let k : R

n × R
n → R be a kernel, then k(·, x) is a partially evaluated kernel with

x ∈ R
n and represents a function R

n → R.

Theorem: [Reproducing Kernel Property] Let k : R
n × R

n → R
n be a positive

definite kernel, then the following property holds,

k(x, y) = k(x, ·) • k(·, y),

with x, y ∈ R
n.
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Feature Spaces are
not Unique

We illustrate that feature spaces are not unique using our homogeneous polynomial kernel to the
power of two, that is, k(x, y) = (x • y)2 with x, y ∈ R

2. Let Φ : R
2 → R

3 such that

Φ(x) = Φ(x1, x2) = (x
2

1, x
2

2,
√

2x
2

1x
2

2)

and Ψ : R
2 → {R

2 → R} with

Ψ(x) = k(·, x) = ((·) • x)
2
,

be two mappings from our input space to two different feature spaces, then

Φ(x) • Φ(y) = (x
2
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= (x • y)
2

= k(x, y)

= k(·, x) • k(·, y)

= ((·) • x)
2 • ((·) • y)

2

= Ψ(x) • Ψ(y).

The section on kernels in the book shows that the construction Ψ(x) • Ψ(y) is indeed well defined
and represents a dot product in an appropriate feature space.
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