Kernel Functions

in terms of kernels,

l l
f(@) = sign (Z QGyik(Ti,T) — Y afyik(Ti, T,y 1) + 1)
1=1 =1

We can write our training algorithm in terms of kernel functions as well,

l 1L
& = argmax Z @i =3 Z Z iy Y k(Ti, T5) |
@ i=1

i=1j=1

subject to the constraints,

l
Z a;Yi = Oa
1=1

Selecting the right kernel for a particular non-linear classification problem is called feature search.

If we let k(z,y) = &(T) @ ®(y) be a kernel function, then we can write our support vector machine
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Kernel Functions

Kernel Name

Free Parameters

Linear Kernel

Homogeneous Polynomial Kernel

Non-Homogeneous Polynomial Kernel

Gaussian Kernel

none

d>2,¢>0

>0
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Non-linear Classifiers

Let’'s review classification with non-linear SVMs:
1. We have a non-linear data set.

2. Pick a kernel other than the linear kernel, this means that the input space will be
transformed into a higher dimensional feature space.

3. Solve our dual maximum margin problem in the feature space (we are solving now a
i linear classification problem).

4. The resulting model is a linear model in feature space and a non-linear model in
Input space.
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A Closer Look at
Kernels

We have shown that for ®(z1,z2) = (23, 22, v/2z122) the kernel
k(@,7) = ©(7) e 2(7) = (T o 7)".

That is, we picked our mapping from input space into feature space in such a way that
the kernel in feature space can be evaluated in input space.

This begs the question: What about the other kernels? What do the associated feature
spaces and mappings look like?

It turns out that for each kernel function we can construct a canonical feature space and
mapping. This implies that features spaces and mappings for kernels are not unigue!
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Properties of Kernels

Definition: [Positive Definite Kernel] A function k£ : R™ x R™ — R such that

l l
ZZ i0ik(zi,T;) >0

holds is called a positive definite kernel Here, 0;,60; € Rand zy,...,x; is a set
of points in R™.
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Properties of Kernels

New notation: Let £ : R™ x R™ — R be a kernel, then k(-, x) is a partially evaluated kernel with
z € R™ and represents a function R" — R.

Theorem: [Reproducing Kernel Property] Let k : R™ x R™ — R™ be a positive
definite kernel, then the following property holds,

kj(fa g) — k’(fa ) ® k(ag)a

withz,y € R™.
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Feature Spaces are
not Unigue

We illustrate that feature spaces are not unique using our homogeneous polynomial kernel to the
power of two, that is, k(Z,7) = (z e 7)? with z, 7 € R?. Let & : R? — R” such that

(7)) = ®(zx1,22) = (x7, 23, V2zT23)
and ¥ : R? — {R? — R} with
V(T) = k(- 7) = ((-) o T)°,
be two mappings from our input space to two different feature spaces, then
o(T) o B(Y) = (T1, T, V27,75) ® (U1, Va» V27,75)
= (Tey)
= k(Z,7)
= k(-,T) o k(- 7)
= (()em) e ((-) ey’
= U(T) o U(7).

The section on kernels in the book shows that the construction ¥ (z) e W(%) is indeed well defined
and represents a dot product in an appropriate feature space.
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