Noisy Data

Noisy data =- small margin.
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Y
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a) b)

- Solution: ignore the noisy points.
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Maximum Margin
Classifiers

Recall that our maximum margin classifiers are models of the form
f(T) =sign(WeT —b),

where the normal vector w and the offset term b of the decision surface are computed
via the primal optimization problem,

1
min ¢(w, b) = min 5@ ® W,

subject to the constraints,
yi(EOEi —b) —1>0,

with s = 1,...,1 given the training set (Z1,y1), ..., (T;,y;) € R™ x {+1, —1}.
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Softmargin
Classifiers

If we allow points to lie on the “wrong” side of their supporting hyperplanes we need to keep track of
the amount of error that this introduces = slack variables denoted with & (xi) (see Fig b above)

We change our training algorithm by taking the slack variables into account. We rewrite our
constraints as

yi(wew; —b)+& —12>0,
We also modify our objective function,

l
min ¢(w, £, b) = min (%EQE—FC;&) ,

w,E,b w,E,b

Our new objective function looks just like the objective function for maximum margin classifiers except
for the penalty term C Z,li:l &;. Cis called the cost. In this way the optimization becomes a trade off
between the size of the margin and the size of the error measured by the slack variables,

large C' ~ small margin

small C' ~ large margin
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Softmargin
Classifiers

Putting this all together,

Proposition: [Soft-Margin Optimization] Given a training set

D = {(517 yl)a (527 y2)7 sy (Ela yl)} g Rn X {—I_]-’ _1}7
we can compute a soft-margin decision surface w™ e T = b™ with an optimization,
_ 1 !
min ¢(w,&,b) = min —EOE—I—CZ& ,
E,E,b wagab 2 1=1
subject to the constraints,

yi(wex; —b)+& —12>0,
5%207

withs =1,...,0, & = (&1,...,&),and C > 0.

Note: The slack variables have no impact on the form of our model f(Z) = sign(w* ¢ & — b*).
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The Dual

As before we start by constructing the Lagrangian,

!
L(E,B,E,E,b) - %EOE-FCZfZ
i—1
!
— Z%(?Ji(ﬁOfi —b)+& —1)
i—1

z
- Bi&
i=1

We have an additional set of Lagrangian multipliers for the additional constraints.

This gives us the Lagrangian optimization problem,

subject to the constraints,

fori =1,...,1.
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The Dual

oL
0¢;

g—é’(a,ﬁ,mz, b*)
of (ys (W™ @ T; —b*) + &7 — 1)
Brer

L _ _
8_(57/87w*7§7b) - 07
ow

(a7B7m7 6:7 b) — 07

=0,
=0,
=0,

yi(w” ex; —b*)+& —12>0,

fori=1,...,1.

> 0,

207
207

Since the primal objective function is convex, this Lagrangian has a unique saddle point
and therefore a solution o™, E*,w*,g*, b* has to satisfy the KKT conditions,
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The Dual

Now taking the partial derivatives in terms of the primal variables:

O (05,5 ) = — 3 s = 0
— (o, 0, w ,¢§, =w — aiYiL; = U,
ow i=1 !

l

15, —
O @ B.w &b Z iy = 0,

(aﬁa Sj,b):C—O&L—ﬁz:O,

357,

Since both «; > 0 and 3; > 0 the last equation implies that

CZOQ;ZO.

Putting this all together we can derive the dual,

[\.'JI}—\

l
¢<a=Z

l l
E E ;LYY T; ® L.
1=1 :]_
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\ The Dual

Proposition [The Soft-Margin Lagrangian Dual] Given a soft-margin optimization
in primal form (see the beginning of this set of slides) then the Lagrangian dual
optimization for a soft-margin classifier is

l 1
1
! — — —
maaxcb (o) = max E 1 @i = 3 E E Qi QjY;Y;Ti ® T
1=

i=1j5=1

subject to the constraints,

l

i Zazyz — 07

i=1
C>a; 20,

withz = 1,...,1. Here, C is the cost constant.

It is remarkable that this dual differs from the hard-margin case only in the range of values the
Lagrangian multipliers can take on: Points in the margin o; = C, points on the supporting
hyperplanes C' > «; > 0, and points far away from the decision surface a; = 0.
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Soft-Margin
Classifiers

SVM classification plot SVM classification plot
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> svm nodel <- svm(Di agnosis™.,
dat a=bi oned. df,
type="C-cl assification",
cost=1. 0,

kernel ="1i near") /
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Soft-Margin
Classifiers

SVM classification plot
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> svm nodel <- svm(y~.,
dat a=non. | i near . df,
type="C-classification",
cost =1,
ker nel =" pol ynom al ",
degree=2,
coef 0=0) —p. 10/



let D = {(Z1,91)s---, (T, v1)}
let0 < n <1
@ —0
b—0
r — max{|7| | (z,y) € D}
repeat
fors = 1tol
if sign(Zé-:l QA;Y;L; ® T; — b) # vy, then
o; — o +1
b b— ny;r
end if
end for
until done
return (o, b)

Observations:

Kernel-Perceptron

let D = {(Z1,v1), - -
letnp > 0
oa«—0
b+—20
repeat
for: = 1toldo
if sign(ZéZl a;y;k(z;,T;)—b) # y; then
o; — a; +1

(T, y1)}

b—b—ny;
end if
end for
until done
return (o, b)

B we extend our linear classifier to a non-linear perceptron.

M However, sub-optimal decision surface, algorithm stops as soon as a decision surface is found.
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