
Noisy Data
Noisy data ⇒ small margin.

+

+

+

-

-

-

+

-

-

-

-

+

+

+

-

-

-

+

-

-

-

-

a) b)

Solution: ignore the noisy points.

– p. 1/1

Maximum Margin
Classifiers

Recall that our maximum margin classifiers are models of the form

f̂(x) = sign (w • x − b) ,

where the normal vector w and the offset term b of the decision surface are computed
via the primal optimization problem,

min φ(w, b) = min
1

2
w • w,

subject to the constraints,

yi(w • xi − b) − 1 ≥ 0,

with i = 1, . . . , l given the training set (x1, y1), . . . , (xl, yl) ∈ R
n × {+1,−1}.

– p. 2/1

Softmargin
Classifiers

If we allow points to lie on the “wrong” side of their supporting hyperplanes we need to keep track of
the amount of error that this introduces ⇒ slack variables denoted with ξ (xi) (see Fig b above)

We change our training algorithm by taking the slack variables into account. We rewrite our
constraints as

yi(w • xi − b) + ξi − 1 ≥ 0,

with ξi ≥ 0.

We also modify our objective function,

min
w,ξ,b

φ(w, ξ, b) = min
w,ξ,b

1

2
w • w + C

lX
i=1

ξi

!
,

Our new objective function looks just like the objective function for maximum margin classifiers except
for the penalty term C

Pl
i=1 ξi. C is called the cost. In this way the optimization becomes a trade off

between the size of the margin and the size of the error measured by the slack variables,

large C ∼ small margin

small C ∼ large margin

– p. 3/1

Softmargin
Classifiers

Putting this all together,

Proposition: [Soft-Margin Optimization] Given a training set

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1,−1},

we can compute a soft-margin decision surface w∗ • x = b∗ with an optimization,

min
w,ξ,b

φ(w, ξ, b) = min
w,ξ,b

1

2
w • w + C

lX
i=1

ξi

!
,

subject to the constraints,

yi(w • xi − b) + ξi − 1 ≥ 0,

ξi ≥ 0,

with i = 1, . . . , l, ξ = (ξ1, . . . , ξl), and C > 0.

Note: The slack variables have no impact on the form of our model f̂(x) = sign(w∗ • x − b∗).

– p. 4/1

The Dual
As before we start by constructing the Lagrangian,

L(α, β, w, ξ, b) =
1

2
w • w + C

lX
i=1

ξi

−
lX

i=1

αi(yi(w • xi − b) + ξi − 1)

−
lX

i=1

βiξi

We have an additional set of Lagrangian multipliers for the additional constraints.

This gives us the Lagrangian optimization problem,

max
α,β

min
w,ξ,b

L(α, β, w, ξ, b),

subject to the constraints,

αi ≥ 0,

βi ≥ 0,

for i = 1, . . . , l.
– p. 5/1

The Dual
Since the primal objective function is convex, this Lagrangian has a unique saddle point
and therefore a solution α∗, β∗, w∗, ξ∗, b∗ has to satisfy the KKT conditions,

∂L

∂w
(α, β, w∗, ξ, b) = 0,

∂L

∂ξi
(α, β, w, ξ∗i , b) = 0,

∂L

∂b
(α, β, w, ξ, b∗) = 0,

α∗i (yi(w
∗ • xi − b∗) + ξ∗i − 1) = 0,

β∗i ξ∗i = 0,

yi(w
∗ • xi − b∗) + ξ∗i − 1 ≥ 0,

α∗i ≥ 0,

β∗i ≥ 0,

ξ∗i ≥ 0,

for i = 1, . . . , l.

– p. 6/1

The Dual
Now taking the partial derivatives in terms of the primal variables:

∂L

∂w
(α, β, w∗, ξ, b) = w∗ −

lX
i=1

αiyixi = 0,

∂L

∂b
(α, β, w, ξ, b∗) =

lX
i=1

αiyi = 0,

∂L

∂ξi

(α, β, w, ξ∗
i , b) = C − αi − βi = 0,

Since both αi ≥ 0 and βi ≥ 0 the last equation implies that

C ≥ αi ≥ 0.

Putting this all together we can derive the dual,

φ
′
(α) =

lX
i=1

αi − 1

2

lX
i=1

lX
j=1

αiαjyiyjxi • xj .

– p. 7/1

The Dual
Proposition [The Soft-Margin Lagrangian Dual] Given a soft-margin optimization
in primal form (see the beginning of this set of slides) then the Lagrangian dual
optimization for a soft-margin classifier is

max
α

φ′(α) = max
α

0
@ lX

i=1

αi − 1

2

lX
i=1

lX
j=1

αiαjyiyjxi • xj

1
A

subject to the constraints,

lX
i=1

αiyi = 0,

C ≥ αi ≥ 0,

with i = 1, . . . , l. Here, C is the cost constant.

It is remarkable that this dual differs from the hard-margin case only in the range of values the
Lagrangian multipliers can take on: Points in the margin αi = C, points on the supporting
hyperplanes C > αi > 0, and points far away from the decision surface αi = 0.

– p. 8/1

Soft-Margin
Classifiers

 A
ng

in
a

 M
I

6000 10000 14000 18000

100

120

140

160

180

200

o

o
o

o

o

o

o

x

x

SVM classification plot

White.Blood.Count

S
ys

to
lic

.B
lo

od
.P

re
ss

ur
e

 A
ng

in
a

 M
I

6000 10000 14000 18000

100

120

140

160

180

200

o

x

x

x

x

x

x

x

x

SVM classification plot

White.Blood.Count

S
ys

to
lic

.B
lo

od
.P

re
ss

ur
e

a) b)

> svm.model <- svm(Diagnosis˜.,

data=biomed.df,

type="C-classification",

cost=1.0,

kernel="linear")
– p. 9/1

Soft-Margin
Classifiers

O
N

E
T

W
O

−2 −1 0 1 2

−2

−1

0

1

2

o

o

o

o

o

o

o

o

oo

o

xx

x

x

x

SVM classification plot

x2

x1

> svm.model <- svm(y˜.,

data=non.linear.df,

type="C-classification",

cost=1,

kernel="polynomial",

degree=2,

coef0=0) – p. 10/1

Kernel-Perceptron
let D = {(x1, y1), . . . , (xl, yl)}
let 0 < η < 1

α← 0

b← 0

r ← max{|x| | (x, y) ∈ D}
repeat

for i = 1 to l

if sign(
Pl

j=1 αjyjxj • xi − b) �= yi then
αi ← αi + 1

b← b− ηyir2

end if
end for

until done
return (α, b)

let D = {(x1, y1), . . . , (xl, yl)}
let η > 0

α← 0

b← 0

repeat
for i = 1 to l do

if sign(
Pl

j=1 αjyjk(xj , xi)− b) �= yi then
αi ← αi + 1

b← b− ηyi

end if
end for

until done
return (α, b)

Observations:

We extend our linear classifier to a non-linear perceptron.

However, sub-optimal decision surface, algorithm stops as soon as a decision surface is found.

– p. 11/1

