
Performance Metrics

The simplest performance metric is the model error defined as the number of mistakes
the model makes on a data set divided by the number of observations in the data set,

err =
number of mistakes

total number of observations
.

– p. 1/1

The Model Error
In order to define the model error formally we introduce the 0-1 loss function. This function compares
the output of a model for a particular observation with the label of this observation. If the model
commits a prediction error on this observation then the loss function returns a 1, otherwise it returns
a 0.

Formally, let (x, y) ∈ D be an observation where D ⊆ R
n × {+1,−1} and let

f̂ : R
n → {+1,−1} be a model, then we define the 0-1 loss function

L : {+1,−1} × {+1,−1} → {0, 1} as,

L
“

y, f̂(x)
”

=

8<
:

0 if y = f̂(x),

1 if y �= f̂(x).

Let D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1,−1}, let the model f̂ and the loss function L be as

defined above, then we can write the model error as,

errD[f̂] =
1

l

lX
i=1

L
“

yi, f̂(xi)
”

,

where (xi, yi) ∈ D.

The model error is the average loss of a model over a data set.

– p. 2/1

Model Accuracy
We can also characterize the performance of a model in terms of its accuracy,

acc =
number of correct predictions

total number of observations
.

Again, we can use the 0-1 loss function to define this metric more concisely,

accD[f̂] =
1

l

l −

lX
i=1

L
“

yi, f̂(xi)
”!

= 1 − 1

l

lX
i=1

L
“

yi, f̂(xi)
”

= 1 − errD[f̂].

accD[f̂] = 1 − errD[f̂]

– p. 3/1

Example

As an example of the above metrics, consider a model ĝ which commits 5 prediction
errors when applied to a data set Q of length 100. We can compute the error as,

errQ[ĝ] =
1

100
(5) = 0.05.

We can compute the accuracy of the model as,

accQ[ĝ] = 1 − errQ[ĝ] = 1 − 0.05 = 0.95.

– p. 4/1

Model Errors
Let (x, y) ∈ R

n × {+1,−1} be an observation and let f̂ : R
n → {+1,−1} be a model,

then we have the following four possibilities when the model is applied to the observation,

f̂(x) =

8>>>><
>>>>:

+1 if y = +1, called the true positive

−1 if y = +1, called the false negative

+1 if y = −1, called the false positive

−1 if y = −1, called the true negative

This means that models can commit two types of model errors.

Under certain circumstances it is important to distinguish these types of errors when
evaluating a model.

We use a confusion matrix to report these errors in an effective manner.

– p. 5/1

The Confusion Matrix
A confusion matrix for a binary classification model is a 2 × 2 table that displays the observed labels
against the predicted labels of a data set.

Observed (y) \ Predicted (ŷ) +1 -1

+1 True Positive (TP) False Negative (FN)

-1 False Positive (FP) True Negative (TN)

One way to visualize the confusion matrix is to consider that applying a model f̂ to an observation
(x, y) will give us two labels. The first label y is due to the observation and the second label
ŷ = f̂(x) is due to the prediction of the model. Therefore, an observation with the label pair (y, ŷ)

will be mapped onto a confusion matrix as follows,

(+1,+1) �→ TP

(-1,+1) �→ FP

(+1,-1) �→ FN

(-1,-1) �→ TN

– p. 6/1

The Confusion Matrix
Example:

Observed \ Predicted +1 -1

+1 95 7

-1 4 94

A confusion matrix of a model applied to a set of 200 observations. On this set of
observations the model commits 7 false negative errors and 4 false positive errors in
addition to the 95 true positive and 94 true negative predictions.

– p. 7/1

Example

Wisconsin Breast Cancer Dataset:

> library(e1071)

> wdbc.df <- read.csv("wdbc.csv")

> svm.model <- svm(Diagnosis ˜ .,

data=wdbc.df,

type="C-classification",

kernel="linear",

cost=1)

> predict <- fitted(svm.model)

> cm <- table(wdbc.df$Diagnosis,predict)

> cm

predict

B M

B 355 2

M 5 207

> err <- (cm[1,2] + cm[2,1])/length(predict) * 100

> err

[1] 1.230228

– p. 8/1

Model Evaluation
Model evaluation is the process of finding an optimal model for the problem at hand.

You guessed, we are talking about optimization!

Let,

D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

be our training data, then we can write our parameterized model as,

f̂D [k, λ, C](x) = sign

lX

i=1

αC,iyik[λ](xi, x) − b

!
,

where (xi, yi) ∈ D.

With this we can write our model error as,

errD
h
f̂D [k, λ, C]

i
=

1

l

lX
i=1

L
“
yi, f̂D[k, λ, C](xi)

”
,

where (xi, yi) ∈ D.

– p. 9/1

Training Error
The optimal training error is defined as,

min
k,λ,C

errD
h
f̂D[k, λ, C]

i
= min

k,λ,C

1

l

lX
i=1

L
“

yi, f̂D[k, λ, C](xi)
”

.

– p. 10/1

Training Error

Observation:

The problem here is that we can always find a set of model parameters that make the
model complex enough to drive the training error down to zero.

The training error as a model evaluation criterion is overly optimistic.

– p. 11/1

The Hold-Out Method
Here we split the training data D into a training set and a testing set P and Q,
respectively, such that,

D = P ∪ Q and P ∩ Q = ∅.
The optimal training error is then computed as the optimization problem,

min
k,λ,C

errP
h
f̂P [k, λ, C]

i
= errP

h
f̂P [k•, λ•, C•]

i
.

Here, the optimal training error is obtained with model f̂P [k•, λ•, C•].

The optimal test error is computed as an optimization using Q as the test set,

min
k,λ,C

errQ
h
f̂P [k, λ, C]

i
= errQ

h
f̂P [k∗, λ∗, C∗]

i
.

The optimal test error is achieved by some model f̂P [k∗, λ∗, C∗].

– p. 12/1

The Hold-Out Method

Model Complexity

E
rr

or

high

high

Test Error
Training Error

– p. 13/1

