Performance Metrics

The simplest performance metric is the model error defined as the number of mistakes
the model makes on a data set divided by the number of observations in the data set,

orr — number of mistakes
total number of observations
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Y The Model Error

In order to define the model error formally we introduce the 0-1 loss function. This function compares
the output of a model for a particular observation with the label of this observation. If the model
commits a prediction error on this observation then the loss function returns a 1, otherwise it returns

ao.

Formally, let (z, y) € D be an observation where D C R™ x {+1,—1} and let
f: R™ — {41, —1} be a model, then we define the 0-1 loss function

L: {+1,—-1} x {+1,—-1} — {0,1} as,

i 0ify = f(@),
i E(y,f(f)) = _ L
Lify # f(T).
Let D = {(Z1,y1),- .., (T1,y1)} C R™ x {+1, —1}, let the model f and the loss function £ be as

defined above, then we can write the model error as,

l

errp[f] = %ZE (yi,f(fi)) ;

=1

where (z;,vy;) € D.

The model error is the average loss of a model over a data set.
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Model Accuracy

We can also characterize the performance of a model in terms of its accuracy,

number of correct predictions

acc = i i
total number of observations

Again, we can use the 0-1 loss function to define this metric more concisely,

accp[f] = % <l — z_l:ﬁ (yi,f(fi))>
i :1—%25(3/7;,]?(@))

=1 —errp[f].

accp[f] =1 — errp|f]
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As an example of the above metrics, consider a model g which commits 5 prediction
errors when applied to a data set () of length 100. We can compute the error as,

1
errglgl = —(5) = 0.05.
0ld] = w5 (5)
We can compute the accuracy of the model as,

accgolg] =1 —errg[gl =1 —0.05 = 0.95.
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Model Errors

Let (Z,y) € R™ x {+1,—1} be an observation and let f : R™ — {+1, —1} be a model,
then we have the following four possibilities when the model is applied to the observation,

r +1 if y = +1, called the true positive

—1 if y = 41, called the false negative

f@=< . -
+1 if y = —1, called the false positive

| —1if y = —1, called the true negative

This means that models can commit two types of model errors.

Under certain circumstances it is important to distinguish these types of errors when
evaluating a model.

We use a confusion matrix to report these errors in an effective manner.
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The Confusion Matrix

A confusion matrix for a binary classification model is a 2 x 2 table that displays the observed labels

against the predicted labels of a data set.

Observed (y) \ Predicted (g) +1 -1
+1 True Positive (TP) False Negative (FN)
-1 False Positive (FP) True Negative (TN)

One way to visualize the confusion matrix is to consider that applying a model f to an observation
(z, y) will give us two labels. The first label y is due to the observation and the second label

U = f(f) is due to the prediction of the model. Therefore, an observation with the label pair (y, )
will be mapped onto a confusion matrix as follows,

(+1+1) ~— TP
(-1,41) ~— FP
(+1,-1) — FN
-1-1) — TN
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The Confusion Matrix

Example:

Observed \ Predicted +1 -1

+1 95 7
-1 4 94

A confusion matrix of a model applied to a set of 200 observations. On this set of
observations the model commits 7 false negative errors and 4 false positive errors in
addition to the 95 true positive and 94 true negative predictions.
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Wisconsin Breast Cancer Dataset:;

>
>
>

>
>

library(el071)

wdbc. df <- read. csv("wdbc. csv")

svm nodel <- svm(Di agnhosis ~ .
dat a=wdbc. df ,

type="C-classification",

kernel ="l i near",
cost =1)
predict <- fitted(svm nodel)
cm <- tabl e(wdbc. df $Di agnosi s, predi ct)
cm
predi ct
B M
B 355 2
M 5 207

err <- (cnf1,2] + cn{2,1])/1ength(predict) * 100

err

[1] 1.230228
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Model Evaluation

Model evaluation is the process of finding an optimal model for the problem at hand.
You guessed, we are talking about optimization!

Let,
D = {(flayl)a LI (flayl)} - R™ x {+17 _1}

be our training data, then we can write our parameterized model as,

l
fD [k’ A, C](E) = sign (Z OéC,iyikP\] (fui) - b) ;

i=1
where (z;,y;) € D.
With this we can write our model error as,

l

errp [fp[k,A,O]} = %Zﬁ (yi,fD[kJ,C](fi)) ,

=1

where (z;,vy;) € D.
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Training Error

The optimal training error is defined as,

l

o 1 N
min errp [fD[k:, A, C]] = min ;c (y Folk, A, C](@-)) .

high

Error

low

low high

Model Complexity
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Training Error

Observation:

The problem here is that we can always find a set of model parameters that make the
model complex enough to drive the training error down to zero.

The training error as a model evaluation criterion is overly optimistic.
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Y The Hold-Out Method

Here we split the training data D into a training set and a testing set P and @,
respectively, such that,

D=PuUuQand PNQ = 0.

The optimal training error is then computed as the optimization problem,

krg\i%errp [fp[k,A,C]] —errp |:fp[k.,)\.,0.]:| :

Here, the optimal training error is obtained with model fp [k®,\®,C°].

The optimal test error is computed as an optimization using () as the test set,

kH;\lI(lj erro [fp[k,A,C]] = errg [fp[k*,A*,C*]] .

The optimal test error is achieved by some model fp [k*, A%, C*].
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The Hold-Out Method

Test Error
— Training Error

errg [fp[k., A, C'ﬂ —————————————————————— .

S RS | E 1

errp [fp[k:*, AF, C*]} ___________

N A

felk™, A", C7 fp[k®,A°,C®] high

»

Model Complexity
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