
Confidence Intervals

Observation: It does not matter how careful we are with our model evaluation
techniques, there remains a fundamental uncertainty about the ability of our data set D

to effectively represent our (possibly infinite) data universe.

This uncertainty reflects into our model evaluation. If D is a poor representation then the
models we construct using D will generalize poorly to the rest of the data universe. If D

is a good representation of the data universe then we can expect that our model will
generalize well.

Here we will deal with this uncertainty using confidence intervals.

Perhaps most surprising is that we will use D itself in order to estimate this uncertainty
using the bootstrap.
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Confidence Intervals
First, let us define error confidence intervals formally.

Given a model error errD over some data set D, then the error confidence interval is
defined as the probability p that our model error errD lies between some lower bound lb
and some upper bound ub,

Pr (lb ≤ errD ≤ ub) = p.

Paraphrasing this equation with p = 95%:

We are 95% percent sure that our error errD is not better than lb and not
worse than ub.
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The Bootstrap
A particular effective and computationally straightforward way to estimate the lower and upper
bounds of confidence intervals is the bootstrap.

What is remarkable about the bootstrap is that we use the data set D itself to capture the uncertainty
with which it represents the data universe at large.

In the bootstrap we create b bootstrap samples of our data set D using sampling with replacement.

We use the variation among the bootstrap samples to compute the variation in the respective model
errors.
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The Bootstrap

given data set D

for i = 1 to 200 do
B[i]← sample D with replacement, note |B[i]| = |D|.
err[i]← compute model error using parameter set (k∗, λ∗, C∗) and B[i].

end for
sort err in ascending fashion

ub← err[195]
lb← err[5]

return (lb, ub)

The algorithm to compute a 95% error confidence interval.
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Model Comparisons

By now it should be clear that a single performance number computed on D is perhaps a
poor indicator for models.

As an example, consider the model f̂D [k∗, λ∗, C∗] with a cross-validated error,

CVED[k∗, λ∗, C∗] = 0.1,

and a 95% confidence interval [0.08, 0.12]. Consider another model f̂D [k•, λ•, C•] with
a cross-validated error,

CVED[k•, λ•, C•] = 0.05,

and a 95% confidence interval [0.01, 0.09].

By just looking at the cross-validated error we are tempted to say that the second model
is superior to the first model.

However, the confidence intervals overlap, meaning that the performance difference
between the two models is statistically not significant.
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