Gradient Ascent

Recall the following setting for training support vector machines.

Assume that we are given the training set,

D = {(Elayl)a (5273/2)7 RIS (flayl)} - R™ x {+17_1}

We are interested in computing a classifier in the form of a support vector machine model,

l
f(@) = sign (Z yia k(T;, T) — b*) :
=1

using a training algorithm based on the Lagrangian dual,

l l l
1
ot = argmax ¢ (@) = argmax E ai — o E E yiyjoioik(z;, ;) |,
« < i=1 i=1j=1

subject to the constraints,

l
Zyzaz - 07
=1

C>a; >0,

withs =1,...,1.

—-p. L

Gradient Ascent

In order to train SVMs we need to solve the optimization problem

a" = argmax ¢’ (@).
«

Perhaps the most straightforward implementation of the Lagrangian dual optimization problem is by
gradient ascent.

Formally, let h be a differentiable function with respectto z € R™, then the gradient of h is defined as,
Th — (oh oh)
 \ Oz’ " Ox,)

We often write,
Oh

— Y
8ZB7;

Vih

for the s component of VA withi = 1, ..., n.
Now, Vh(y) withy € R™ is a vector that points in the direction of the largest increase of h at point .

We can use this to find the maximum of our dual ¢’ by simply following the gradient until the gradient
becomes zero =- gradient ascent.

—p. 2

Gradient Ascent

let n € [0, 1]
a—20
repeat

Qold < O

for: =1toldo

o — oy + V¢ (@)

H end for
until &@ — @y ~ 0
return o

The gradient ascent algorithm.

Gradient Ascent

Observation: We have treated our optimization problem as an unconstrained
optimization problem ignoring the constraints,

l
Zy’iai — Oa
1=1

C>a; >0,

with: = 1,...,[. The first constraint is due to the optimization of the offset term b and
the second constraint is the soft-margin constraint for the Lagrangian multipliers.
We can dispense with the first constraint by simply setting b = 0.

The second constraint is easily implemented as a set of box constraints on &,

o; <— min {C’, max {O, o; + nViqb’(a)}} .

-p. 4

The Kernel-Adatron

let D = {(T1,51), (T2,92),- -, @, y)} CR™ x {+1, -1}
letn >0
let C' >0
letb =0
a—20
repeat
Qold < &
for: =1tol do
Q; <— min {C’, max {O, a; +n1n—ny; 22:1 yjajk(fj,fi)}}
end for
until @ — agg =~ 0
return (o, b)

The Kernel-Adatron algorithm.

-p.5

