
Gradient Ascent
Recall the following setting for training support vector machines.

Assume that we are given the training set,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1,−1}.

We are interested in computing a classifier in the form of a support vector machine model,

f̂(x) = sign

 
lX

i=1

yiα
∗
i k(xi, x) − b∗

!
,

using a training algorithm based on the Lagrangian dual,

α∗ = argmax
α

φ′(α) = argmax
α

0
@ lX

i=1

αi − 1

2

lX
i=1

lX
j=1

yiyjαiαjk(xi, xj)

1
A ,

subject to the constraints,

lX
i=1

yiαi = 0,

C ≥ αi ≥ 0,

with i = 1, . . . , l.
– p. 1/



Gradient Ascent
In order to train SVMs we need to solve the optimization problem

α
∗

= argmax
α

φ
′
(α).

Perhaps the most straightforward implementation of the Lagrangian dual optimization problem is by
gradient ascent.

Formally, let h be a differentiable function with respect to x ∈ R
n, then the gradient of h is defined as,

∇h =

„
∂h

∂x1
, · · · ,

∂h

∂xn

«
.

We often write,

∇ih =
∂h

∂xi

,

for the ith component of ∇h with i = 1, . . . , n.

Now, ∇h(y) with y ∈ R
n is a vector that points in the direction of the largest increase of h at point y.

We can use this to find the maximum of our dual φ′ by simply following the gradient until the gradient
becomes zero ⇒ gradient ascent.

– p. 2/



Gradient Ascent

let η ∈ [0, 1]

α← 0

repeat
αold ← α

for i = 1 to l do
αi ← αi + η∇iφ

′(α)

end for
until α− αold ≈ 0

return α

The gradient ascent algorithm.

– p. 3/



Gradient Ascent
Observation: We have treated our optimization problem as an unconstrained
optimization problem ignoring the constraints,

lX
i=1

yiαi = 0,

C ≥ αi ≥ 0,

with i = 1, . . . , l. The first constraint is due to the optimization of the offset term b and
the second constraint is the soft-margin constraint for the Lagrangian multipliers.

We can dispense with the first constraint by simply setting b = 0.

The second constraint is easily implemented as a set of box constraints on α,

αi ← min
˘
C, max

˘
0, αi + η∇iφ

′(α)
¯¯

.

– p. 4/



The Kernel-Adatron

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

let η > 0

let C > 0

let b = 0

α← 0

repeat
αold ← α

for i = 1 to l do
αi ← min

n
C, max

n
0, αi + η − ηyi

Pl
j=1 yjαjk(xj , xi)

oo

end for
until α− αold ≈ 0

return (α, b)

The Kernel-Adatron algorithm.

– p. 5/


