
Optimization Problem
Recall the following setting for training support vector machines.

Assume that we are given the training set,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × {+1,−1}.

We are interested in computing a classifier in the form of a support vector machine model,

f̂(x) = sign

l
X

i=1

yiα
∗

i k(xi, x)− b
∗

!

,

using a training algorithm based on the Lagrangian dual,

α
∗ = argmax

α

φ
′(α) = argmax

α

0

@

l
X

i=1

αi −
1

2

l
X

i=1

l
X

j=1

yiyjαiαjk(xi, xj)

1

A ,

subject to the constraints,

l
X

i=1

yiαi = 0,

C ≥ αi ≥ 0,

with i = 1, . . . , l.
– p. 1/15

Quadratic
Programming

We can use quadratic programming to implement support vector machines,

α∗ = argmin
α

„

1

2
αT Qα− q • α

«

,

subject to the constraints,

Yα = 0,

u ≤ α ≤ v.

In order to do this we have to use quadratic programming packages that support both
equality and inequality constraints.

This is different from our use of quadratic programming in the primal maximum margin
classifiers - there we only needed to support inequality constraints,

w∗ = argmin
w

„

1

2
wT Q w − q • w

«

,

subject to the constraints

XTw ≥ c. – p. 2/15

Quadratic
Programming

Quadratic solvers are usually defined in terms of minimization, therefore we need to massage our
support vector optimization problem a little bit,

argmax
α

φ
′(α) = argmin

α

`

−φ
′(α)

´

= argmin
α

0

@

1

2

l
X

i=1

l
X

j=1

yiyjαiαjk(xi, xj)−
l
X

i=1

αi

1

A

= argmin
α

„

1

2
α

T
Qα− q • α

«

where the matrix Q is an l × l matrix with components

Qij = yiyjk(xi, xj)

and the vector q has l components initialized to one,

q = 1.

We call the matrix Q the kernel matrix. In effect, when using quadratic programming solvers we need
to precompute the dot product between the pairwise training points.

– p. 3/15

Quadratic
Programming

The constraints

Yα = 0,

u ≤ α ≤ v.

are easily instantiated. We let Y be a 1× l matrix with components

Y1i = yi,

where (xi, yi) ∈ D then,

Yα =

l
X

i=1

yiαi.

Finally, if we let u = 0 and let vector v be a constant vector with vi = C then,

ui ≤ αi ≤ vi,

which implies

0 ≤ αi ≤ C,

with i = 1, . . . , l.

– p. 4/15

Quadratic
Programming

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

let C > 0

let Q be al× l matrix with componentsQij = yiyjk(xi, xj)

let Y be a1× l matrix with componentsY1j = yj

let q be a constant vector withqi = 1

let u be a constant vector withui = 0

let v be a constant vector withvi = C

α← solve(Q, q,Y, u, v)

b← compute using known support vectors

return (α, b)

Using a quadratic programming solver to train support vector machines.

– p. 5/15

Quadratic
Programming

Observation: Our kernel matrix Q is an l × l matrix on the training set D. Consider a
large training set with 50,000 observations. This would mean that the kernel matrix
contains 2.5 billion elements, or consumes 10GB of memory if we represent each
element with a 4 byte word.

⇒ Not feasible on most of today’s architectures.

– p. 6/15

Chunking

Idea: For most data sets the ratio of support vectors to training instances is very low; we
say that solving the dual optimization problem for SVMs gives rise to a sparse solution.

The idea is then to break up the training data into chunks and search for support vectors
in the individual chunks.

If we keep the size of the chunks or working sets small then the original optimization
problem breaks down into smaller, manageable optimization sub-problems.

– p. 7/15

Chunking

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

let k > 0

α← 0

select a subsetW of sizek from D

repeat forever
solve Lagrangian dual forW (updateα accordingly)
delete observations fromW that are not support vectors
b← compute using support vectors inW
if all d ∈ D satisfy the KKT conditionsthen

return (α, b)

end if
Dk ← thek worst offenders inD of the KKT conditions
W ← W ∪Dk

end repeat

Solving the dual optimization problem using chunking.

Observation: |W ∪Dk| ≈ k when the solution is sparse.

– p. 8/15

Chunking
We are trying to find a global maximum by solving smaller sub-problems - how do we know when we
are done?

⇒We monitor the KKT conditions,

∂L

∂w
(α, β, w

∗
, ξ, b) = 0,

∂L

∂ξi

(α, β, w, ξ
∗

i , b) = 0,

∂L

∂b
(α, β, w, ξ, b

∗

) = 0,

α
∗

i (yi(w
∗ • xi − b

∗) + ξ
∗

i − 1) = 0,

β
∗

i ξ
∗

i = 0,

yi(w
∗

• xi − b
∗

) + ξ
∗

i − 1 ≥ 0,

α
∗

i ≥ 0,

β
∗

i ≥ 0,

ξ
∗

i ≥ 0,

for i = 1, . . . , l.
– p. 9/15

Chunking
A closer look reveals that we only need to monitor the complimentarity conditions,

αi(yi(w • xi − b) + ξi − 1) = 0,

βiξi = 0.

We can rewrite these slightly using the dual for the normal vector w and βi = C − αi as,

αi

0

@yi

0

@

l
X

j=1

yjαjk(xj , xi)− b

1

A− 1 + ξi

1

A = 0,

(C − αi)ξi = 0,

for all (xi, yi) ∈ D with i = 1, . . . , l.

Problem: We cannot directly monitor the slack variables ξi. However, we can obtain a set of
conditions implied by the complimentarity conditions using a case analysis on αi.

– p. 10/15

Chunking

Case analysis:

αi = 0: This implies ξi = 0, therefore yi

“

Pl
j=1

yjαjk(xj , xi)− b
”

≥ 1.

0 < αi < C: This implies ξi = 0, therefore yi

“

Pl
j=1

yjαjk(xj , xi)− b
”

= 1.

αi = C: This implies ξi > 0, therefore yi

“

Pl
j=1

yjαjk(xj , xi)− b
”

≤ 1.

– p. 11/15

Chunking

Putting it all together gives us the condition:

yi

0

@

l
X

j=1

yjαjk(xj , xi)− b

1

A

8

>

>

<

>

>

:

≥ 1 if αi = 0

= 1 if 0 < αi < C

≤ 1 if αi = C

for all (xi, yi) ∈ D with i = 1, . . . , l.

Observation: One way to view these conditions is as a consistency test: if the values of
the Lagrangian multipliers are consistent with the locations of the corresponding training
points vis-à-vis a decision surface, then we have found a global solution.

– p. 12/15

SMO
SMO – Sequential Minimal Optimization.

We can view the SMO algorithm as a chunking algorithm with a working set of size 2.

A working set of size 2 is the smallest working set that allows for an optimization that
satisfies the constraints,

l
X

i=1

yiαi = 0.

Then consider the subproblem of our Lagrangian dual optimization using the Lagrangian
multipliers αj and αk (our working set),

max
αj ,αk

φ′(αj , αk),

subject to the constraints,

yjαj + ykαk = δ,

C ≥ αj , αk ≥ 0,

with j, k = 1, . . . , l and j 6= k.
– p. 13/15

SMO
We can rewrite the second to last equation on the previous slide as,

αk = yk(δ − yjαj).

It follows that,

max
αj ,αk

φ′(αj , αk) = max
αj

φ′ (αj , yk(δ − yjαj)) = max
αj

ψ(αj).

That is, our two-variable optimization problem becomes an optimization problem over the
single variable αj . We represent the objective function of this single variable optimization
problem as ψ(αj). Now ψ has a single maximum that we can find by,

dψ

dαj

= 0,

and solving for αj and then use above equation to fiind αk.

Some care needs to be taken to satisfy the constraints on αi during this optimization.

– p. 14/15

SMO

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

α← 0

repeat
1. pick two points,xj andxk in D together with their

respective Lagrangian multipliers,αj andαk, wherej 6= k.

2. optimize the subproblemmaxφ′(αj , αk) (keeping the other Lagrangian

multipliers constant).

3. computeb
until the KKT conditions hold for alld ∈ D

return (α, b)

Sequential Minimal Optimization.

– p. 15/15

	Optimization Problem
	Quadratic Programming
	Quadratic Programming
	Quadratic Programming
	Quadratic Programming
	Quadratic Programming
	Chunking
	Chunking
	Chunking
	Chunking
	Chunking
	Chunking
	SMO
	SMO
	SMO

