Regression as
Machine Learning

Given

M A data universe X.

M A sample set S where S C X.

B Some target function f : X — R.

M A training set D, where D = {(z,y) | z € Sand y = f(x)}.

Compute a model f : X — R using D such that,

f(a) = f(),

forall z € X.

Observation: Same as machine learning in classification except for the co-domains of
the target function and the model.

Question: How do we compute the model?
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Statistical
Approaches

Assume we have a regression training set of the form,

D = {(517 y1)7 (EQ, y2)7 c ey (Ela yl)} C R"™ x R.
Then let f(f) be a regression model on D, where the quantity
pi =i — f(Ts)

for (z;,y;) € D is called a residual and measures the difference between model output and the
actual observation. Observe that the residual depends on the model we choose.

© Inlinear regression we compute the minimum sum of squared errors in order to obtain an optimal
model,

l l
~ 2
min > pf = min Y (v - f(@)) ",
i=1 f =1
with (z;,y;) € D.

Rewriting the above optimization problem slightly we obtain,

f* = argmlnz (yz f(xz )
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Statistical
Approaches

gl
°
]
I
S

Pp

Linear regression with residuals, here the point z, is an observation and p,, is the
residual at that observation given the model w e z = b.
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dat a( cars)

nmodel <- In(cars$dist ~ ., data = cars)
pl ot (cars)

abl i ne( nodel )
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Maximum Margin
Machines
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a) b)

Solving regression problems with linear models using a € hyper-tube. In part a) we show
a regression model where all observations are within the hyper-tube depicted with the
light gray lines, part b) depicts the optimal regression model with a maximum margin.
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Maximum Margin
Machines

Proposition: Given the regression training set,

D = {(Elayl)a (E27y2)7 I (Elayl)} g R™ x Ra

where the optimal maximum margin regression model can be computed
as the optimization,

are satisfied fori = 1,...,l and where f(Z) =w e Z — .

The constraints specify the the solution must be a model such that the observations are
contained within the e-tube, |y; — f(Z;)| < e.
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Maximum Margin
Machines

In real-world settings it is unrealistic to assume that all observations will fall into a reasonable e-tube,
(e.g. cars data set).

For observations that fall outside the hyper-tube with a fixed value of € we introduce correction terms
or slack variables that tell us how much of a correction is needed in order for these observations to be
moved into the hyper-tube.

Linear maximum margin regression with slack variables.
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Maximum Margin
Machines

We define the slack variables formally as,

Z y: — f(@-)| — e otherwise,
oo @) — v <o
Z ly; — f(Z:)| —e otherwise,

. fori=1,...,lwith (z;,y;) € D.

Here the slack variables &; are zero except for observations that lie above the

hyper-tube. Conversely, the slack variables ¢/ are zero except for observations that lie
below the hyper-tube.
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Maximum Margin
Machines

We can now state regression with maximum margin machines as follows,

Proposition: Given a regression training set,

D = {(Elayl)a (EQay2)7 ey (Elayl)} g Rn X R)

we can compute the optimal regression model f*(Z) = @

optimization

w? b 7E7E
such that the constraints,

yi — f(@:) < & +e,

fori =1,...,lholdwith f(T) = w e T — b.

minqb(ﬁ,b,g,g/) = mmin / %EOE—I—CZ(& +&;

w* ex — b* as the

In the above proposition the penalty constant C' modulates the trade-off between margin

maximization and the minimization of the slack variables.
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Regression with
SVMSs

Recall that SVMs are the dual to maximum margin machines. Also recall that we can
derive the dual to maximum margin optimization by constructing the Lagrangian
optimization,

l
max min L(&@,Z) = max min (cb(f) — Z i gi (E)) :

(81 X 0" X
i=1
subject to the constraints,

Ozi>0,

fori =1,...,1. Here g;(x) > 0 are inequality constraints and the variables & and x are
called the dual and primal variables of the optimization problem, respectively.
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Regression with
SVMSs

As a first step in constructing the Lagrangian optimization we derive our inequality
constraints. This is easily done by slightly rewriting the constraints appearing in the
primal optimization problem,

& +e—yi+ f(T) >0,
& +e—f@)+yi >0,

& >0,
: &> 0.

7

The four sets of inequality constraints imply that we have to introduce four sets of dual
variables into our Lagrangian optimization.
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Regression with

Our Lagrangian:

—zl:ai (§i+8—yz‘+f(fi))
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subject to the constraints,
&g, 04;7 B’ia /87{ Z Oa

fori =1,...,land where f(Z) = w e T — b. _p. 120



Regression with

Given a solution to the Lagrangian optimization,

—x —/x Ak Sk __x x ok /%
):L(a 7a/ 7/6 7/8 7w 7b 7§ 75/ )7

max min L(@, a, B, B/, w, b, E,E
a,a 3,8 w,b,EE

we know that the KKT conditions need to hold.
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KKT Conditions

8L(_* —/* ﬁ*,IB/* —* b*,g g/*)

=0,

ow
oL (a*,a'*, 3%, B/, w*, b* €%, ¢'*) .
ab ’
8L(—* _l*,ﬁ*,ﬁl*,ﬁ*,b*,g*,gl*) .y
o€, ’
aL(a* —/* ﬁ*,IB/* —* b*,g g/*) 0
/ — b

¢’

o (e +e— F*@) +v;) =0,

Bier =0,

/ /
ﬁi*ﬁi* =0,

%k P -
§,L- +€—yz’+f (331;)20,
" +e— @)+ 20,
er,el* > o,
O"L’O‘; Z 0,
Br, B > o0,

wherei = 1,...,land f*(Z) = w* e T — b* is the optimal regression function. —p. 14/1



Regression with
SVMSs

Proposition: Given a regression training set,

D = {(ZT1,y1), (T2,¥y2),---, (T, y1)} CR™ xR,
then we can compute the optimal support vector regression model f* (Z) = w" eT — b™ with

l l
1
max ¢’ (&, @) = max 5 Z Z(O‘Z — a;)(aj — a;)Tz °x;

= =/ = =/
o, @, i=1j=1

l l
+ > yila, —ay) —e > (a5 +ay) |,

subject to the constraints, ! _; (a; — o) = 0and C > oy, o > 0,fori = 1,...,1

1
where

l
W = Z(a;k — a;*)fi,
1=1

l
1
b* = 7 E w*.fi—yi.
1=1
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Regression with
SVMs

As in the case of classification it is perhaps interesting to look at a solution to the
optimization in terms of the complementarity conditions,

o (& +e—wit fr@) =0,
o (& +=— f @) +u) =0,
gre; =0,

Bi*&" =0,

and the fact that a support vector is now described by the coefficient (a; — o) # 0.
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Regression with
SVMSs

First we show that if some point z; is strictly contained in the e-tube then it is not a
support vector. If the point is strictly within the e-tube then the following is true

e >y — f(T),

g > ]E(fz) — Y.

and &;, &, = 0. This means that the following holds,

€i+8—yi+f(fi)>0,
& ve— f(@) +yi > 0.

This implies that «; = 0 and «; = 0 in order for the complimentarity conditions to be
satisfied.

It follows that the coefficient (o;; — ) = 0, thus a point Z; contained in the e-tube is not
a support vector.
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Regression with
SVMSs

Now consider a point z; that sits right on the e-tube boundary, then either

& +e—yi + f(@) =0,
& te— f(@) +vyi >0,

or

Ei+e—yi+ f(T) >0,
£ +e— f(@)+y =0,

with &, 57{ = 0.
(the point z; cannot be on both boundaries at the same time)

This in turn implies that either 0 < a; < Cand a; =00r0 < o, < C and a; = 0.

Note that in this case the coefficient (a;; — ) # 0 and therefore the point z; is

considered a support vector.
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Regression with
SVMSs

Finally, consider the point z; outside of the e-tube, then either

& +e—vyi + f(@) =0,
£ +e— f(T) +yi >0,

or
i & +e—yi + f(@s) >0,
&t e— f@)+yi =0,

(the point z; cannot be above both boundaries at the same time)
This in turn implies that either o; = C'and o, = 0with §; > 0and{, =0 or o = C and
a; = 0 with &; :Oandé’g > 0.

Note that in this case the coefficient (a; — ) # 0 and therefore the point z; is

considered a support vector.
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