
Regression as
Machine Learning

Given

A data universe X.

A sample set S where S ⊂ X.

Some target function f : X → R.

A training set D, where D = {(x, y) | x ∈ S and y = f(x)}.
Compute a model f̂ : X → R using D such that,

f̂(x) ∼= f(x),

for all x ∈ X.

Observation: Same as machine learning in classification except for the co-domains of
the target function and the model.

Question: How do we compute the model?
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Statistical
Approaches

Assume we have a regression training set of the form,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × R.

Then let f̂(x) be a regression model on D, where the quantity

ρi = yi − f̂(xi)

for (xi, yi) ∈ D is called a residual and measures the difference between model output and the
actual observation. Observe that the residual depends on the model we choose.

In linear regression we compute the minimum sum of squared errors in order to obtain an optimal
model,

min

lX
i=1

ρ
2
i = min

f̂

lX
i=1

“
yi − f̂(xi)

”2
,

with (xi, yi) ∈ D.

Rewriting the above optimization problem slightly we obtain,

f̂
∗

= argmin
f̂

lX
i=1

“
yi − f̂(xi)

”2
.
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Statistical
Approaches

Linear regression with residuals, here the point xp is an observation and ρp is the
residual at that observation given the model w • x = b.
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Example
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> data(cars)

> model <- lm(cars$dist ˜ ., data = cars)

> plot(cars)

> abline(model)
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Maximum Margin
Machines

a) b)

Solving regression problems with linear models using a ε hyper-tube. In part a) we show
a regression model where all observations are within the hyper-tube depicted with the
light gray lines, part b) depicts the optimal regression model with a maximum margin.
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Maximum Margin
Machines

Proposition: Given the regression training set,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

where the optimal maximum margin regression model can be computed
as the optimization,

min φ(w, b) = min
w,b

1

2
w • w

such that the constraints,

yi − f̂(xi) ≤ ε,

f̂(xi) − yi ≤ ε,

are satisfied for i = 1, . . . , l and where f̂(x) = w • x − b.

The constraints specify the the solution must be a model such that the observations are
contained within the ε-tube, |yi − f̂(xi)| ≤ ε.
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Maximum Margin
Machines

In real-world settings it is unrealistic to assume that all observations will fall into a reasonable ε-tube,
(e.g. cars data set).

For observations that fall outside the hyper-tube with a fixed value of ε we introduce correction terms
or slack variables that tell us how much of a correction is needed in order for these observations to be
moved into the hyper-tube.

Linear maximum margin regression with slack variables.
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Maximum Margin
Machines

We define the slack variables formally as,

ξi =

8<
: 0 if yi − f̂(xi) ≤ ε,

|yi − f̂(xi)| − ε otherwise,

ξ′i =

8<
: 0 if f̂(xi) − yi ≤ ε,

|yi − f̂(xi)| − ε otherwise,

for i = 1, . . . , l with (xi, yi) ∈ D.

Here the slack variables ξi are zero except for observations that lie above the
hyper-tube. Conversely, the slack variables ξ ′

i are zero except for observations that lie
below the hyper-tube.
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Maximum Margin
Machines

We can now state regression with maximum margin machines as follows,

Proposition: Given a regression training set,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

we can compute the optimal regression model f̂∗(x) = w∗ • x − b∗ as the
optimization

min φ(w, b, ξ, ξ
′
) = min

w,b,ξ,ξ′
1

2
w • w + C

lX
i=1

(ξi + ξ
′
i),

such that the constraints,

yi − f̂(xi) ≤ ξi + ε,

f̂(xi) − yi ≤ ξ
′
i + ε,

0 ≤ ξi, ξ′
i,

for i = 1, . . . , l hold with f̂(x) = w • x − b.

In the above proposition the penalty constant C modulates the trade-off between margin
maximization and the minimization of the slack variables. – p. 9/1



Regression with
SVMs

Recall that SVMs are the dual to maximum margin machines. Also recall that we can
derive the dual to maximum margin optimization by constructing the Lagrangian
optimization,

max
α

min
x

L(α, x) = max
α

min
x

 
φ(x) −

lX
i=1

αigi(x)

!
,

subject to the constraints,

αi ≥ 0,

for i = 1, . . . , l. Here gi(x) ≥ 0 are inequality constraints and the variables α and x are
called the dual and primal variables of the optimization problem, respectively.
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Regression with
SVMs

As a first step in constructing the Lagrangian optimization we derive our inequality
constraints. This is easily done by slightly rewriting the constraints appearing in the
primal optimization problem,

ξi + ε − yi + f̂(xi) ≥ 0,

ξ′i + ε − f̂(xi) + yi ≥ 0,

ξi ≥ 0,

ξ′i ≥ 0.

The four sets of inequality constraints imply that we have to introduce four sets of dual
variables into our Lagrangian optimization.
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Regression with
SVMs

Our Lagrangian:

max
α,α′,β,β′ min

w,b,ξ,ξ′
L(α, α′, β, β

′
, w, b, ξ, ξ

′
) =

max
α,α′,β,β′ min

w,b,ξ,ξ′

 
1

2
w • w + C

lX
i=1

(ξi + ξ′
i)

−
lX

i=1

αi

“
ξi + ε − yi + f̂(xi)

”

−
lX

i=1

α′
i

“
ξ′

i + ε − f̂(xi) + yi

”

−
lX

i=1

βiξi

−
lX

i=1

β
′
iξ

′
i

!
,

subject to the constraints,

αi, α
′
i, βi, β

′
i ≥ 0,

for i = 1, . . . , l and where f̂(x) = w • x − b. – p. 12/1



Regression with
SVMs

Given a solution to the Lagrangian optimization,

max
α,α′,β,β

′ min
w,b,ξ,ξ

′ L(α, α′, β, β
′
, w, b, ξ, ξ

′
) = L(α∗, α′∗, β

∗
, β

′∗
, w∗, b∗, ξ

∗
, ξ

′∗
),

we know that the KKT conditions need to hold.
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KKT Conditions

∂L(α∗, α′∗, β∗, β′∗, w∗, b∗, ξ∗, ξ′∗)

∂w
= 0,

∂L(α∗, α′∗, β∗, β′∗, w∗, b∗, ξ∗, ξ′∗)

∂b
= 0,

∂L(α∗, α′∗, β∗, β′∗, w∗, b∗, ξ∗, ξ′∗)

∂ξi

= 0,

∂L(α∗, α′∗, β∗, β′∗, w∗, b∗, ξ∗, ξ′∗)

∂ξ′
i

= 0,

α
∗
i

“
ξ
∗
i + ε − yi + f̂

∗(xi)
”

= 0,

α′∗
i

“
ξ′∗i + ε − f̂∗(xi) + yi

”
= 0,

β
∗
i ξ

∗
i = 0,

β′∗
i ξ′∗i = 0,

ξ∗i + ε − yi + f̂∗(xi) ≥ 0,

ξ
′∗
i + ε − f̂

∗(xi) + yi ≥ 0,

ξ∗i , ξ′∗i ≥ 0,

αi, α′
i ≥ 0,

β∗
i , β′∗

i ≥ 0,

where i = 1, . . . , l and f̂∗(x) = w∗ • x − b∗ is the optimal regression function. – p. 14/1



Regression with
SVMs

Proposition: Given a regression training set,

D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊆ R
n × R,

then we can compute the optimal support vector regression model f̂∗(x) = w∗ • x − b∗ with

max
α,α′ φ

′
(α, α

′
) = max

α,α′

0
@ 1

2

lX
i=1

lX
j=1

(αi − α
′
i)(αj − α

′
j)xi • xj

+
lX

i=1

yi(αi − α
′
i) − ε

lX
i=1

(αi + α
′
i)

1
A ,

subject to the constraints,
Pl

i=1(αi − α′
i) = 0 and C ≥ αi, α′

i ≥ 0, for i = 1, . . . , l

where

w
∗

=
lX

i=1

(α
∗
i − α

′∗
i )xi,

b∗ =
1

l

lX
i=1

w∗ • xi − yi.
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Regression with
SVMs

As in the case of classification it is perhaps interesting to look at a solution to the
optimization in terms of the complementarity conditions,

α∗
i

“
ξ∗i + ε − yi + f̂∗(xi)

”
= 0,

α′∗
i

“
ξ′∗i + ε − f̂∗(xi) + yi

”
= 0,

β∗
i ξ∗i = 0,

β′∗
i ξ′∗i = 0,

and the fact that a support vector is now described by the coefficient (αi − α′
i) �= 0.
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Regression with
SVMs

First we show that if some point xi is strictly contained in the ε-tube then it is not a
support vector. If the point is strictly within the ε-tube then the following is true

ε > yi − f̂(xi),

ε > f̂(xi) − yi.

and ξi, ξ
′
i = 0. This means that the following holds,

ξi + ε − yi + f̂(xi) > 0,

ξ′i + ε − f̂(xi) + yi > 0.

This implies that αi = 0 and α′
i = 0 in order for the complimentarity conditions to be

satisfied.

It follows that the coefficient (αi − α′
i) = 0, thus a point xi contained in the ε-tube is not

a support vector.
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Regression with
SVMs

Now consider a point xi that sits right on the ε-tube boundary, then either

ξi + ε − yi + f̂(xi) = 0,

ξ′i + ε − f̂(xi) + yi > 0,

or

ξi + ε − yi + f̂(xi) > 0,

ξ′i + ε − f̂(xi) + yi = 0,

with ξi, ξ
′
i = 0.

(the point xi cannot be on both boundaries at the same time)

This in turn implies that either 0 < αi < C and α′
i = 0 or 0 < α′

i < C and αi = 0.

Note that in this case the coefficient (αi − α′
i) �= 0 and therefore the point xi is

considered a support vector.
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Regression with
SVMs

Finally, consider the point xi outside of the ε-tube, then either

ξi + ε − yi + f̂(xi) = 0,

ξ′i + ε − f̂(xi) + yi > 0,

or

ξi + ε − yi + f̂(xi) > 0,

ξ′i + ε − f̂(xi) + yi = 0,

(the point xi cannot be above both boundaries at the same time)

This in turn implies that either αi = C and α′
i = 0 with ξi > 0 and ξ′i = 0 or α′

i = C and
αi = 0 with ξi = 0 and ξ′i > 0.

Note that in this case the coefficient (αi − α′
i) �= 0 and therefore the point xi is

considered a support vector.
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