Model Evaluation

The most common error estimate for regression functions is the mean squared error.

We define a loss function called L2 that computes the squared residual at an
observation (z, y) given a model f,

L L \2
Loy, f@) = (v— F@)
Now, given a regression training set,

D = {(Elayl)a (527y2)7 SRR (Elayl)} - R™ x R)

we define the mean squared error computed on D as,

msep [fD[k \ € C] ZEQ (yz,fD[k A€ C](ﬂ?z)),

with (z;,y;) € D for some appropriate model b [k, N\, e,C]l: R" - R

As before, our error metric is the average loss over of model f'D over the data set D.
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Model Evaluation

In this case the error mse p represents the training error and we can find the optimal training error by
optimizing over the model parameters,

min msep [fp [k, A\, &, C]} :
k,\e,C
As we know from our work in classification, the training error tends to be overly optimistic. Therefore
we use other testing techniques such as the hold-out method or cross-validation. The hold-out
method applies to regression as follows. We start by splitting the set D into two non-overlapping

partitions P and @ such that,
D=PUQ,
where we use P as a training set and ( as a test set. The test error can then be computed as,
1

mseq |:fp[kﬁ,>\,€,0]i| = @ Z Lo (yi,fp[k,A,e,C](fi)) :
(T;,9;)€Q

We can use the test error to find the optimal model f*,

f* = argmin mseq |:fp[ki,>\,€,0]i| :
k,\,e,C
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Examples
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Comparing a simple linear regression model (dashed line) for the ‘cars’ data set with a
support vector regression model (solid line).
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Linear support vector regression model of the ‘cars’ data set with (a) £ = 5 and (b)

e = 5H0.
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Non-Linear
Regression
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One-dimensional support vector regression One-dimensional support vector regression
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Influence of an insensitivity zone e on modeling quality. A nonlinear SVM creates a regression function
with Gaussian kernels and models a highly polluted (25% noise) sine function (dashed). Seventeen mea-
sured training data points (plus signs) are used. Left, ¢ = 0.1, fifteen SV are chosen (encircled plus signs).
Right, e = 0.5, six chosen SVs produced a much better regressing function.

(Source: Learning and Soft Computing, V. Kecman, MIT Press, 2001)
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