In the traditional softmargin classification SVM formulation we have a penalty constant C

such that
1

size of margin’

C x

Furthermore, there is no a priori guidance as to what C' should be set to - the default is a
value of 1. However, the precise value needs to be determined experimentally.
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\ -SVMS

Scholkopf et al. suggest an alternative formulation of softmargin SVYMs based on the v
parameter? with v € [0, 1].

The advantages of the v parameter formulation are that it represents an upper bound on
the fraction of number of margin errors allowed,

vr=.1 — amax. of 10% of training set can be margin errors

v =.8 — amax. of 80% of training can be margin errors
and that it is proportional to the size of the margin,

v o size of margin

This implies that determining a value for v is a more intuitive process that finding a value
for the penalty constant C.

aB. Scholkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New Support Vector Algorithms. Neural Computation,
12:12071245, 2000.
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o o 1
wr’%/ribcb(w,i,p) = SWeW—vp+ o ZSZ

subjectto  y;(wexT; —b) > p—¢&;
§& >0
p=>0

| Here € represents the set of slack variables as before.
Observations:

B We no longer have a constant margin of value 1, instead we consider the size of the margin an
explicit optimization variable - p.

B Observe that if £ = 0 then the margin is 2p/w e w.

B we don't directly penalize the size of the margin errors, instead we penalize the size of the
margin - term vp.

41-SVC means v support vector classification.
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Dual »-SVC

The Lagrangian,

l
— Y ai(yi(WeT; —b) — p+&)

=1

l
— > Bi&
=1
— 6p
with &;, B,,8 > 0.
Where the optimization problem is

max min L(a, 3,48, w,¢&,p,b).
671876w7£7p7b
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fore =1,...,1.

KKT Conditions

A solution &*, 37, 6%, w™*, €, b*, and p* has to satisfy the KKT conditions,

oL — —

__(aaﬁa5am*7£ap7 b) — 07
ow

OL _

851 (aaﬁa5aw7 E;;kapa b) — Oa
OL — _
_(aaﬁa5am7£ap*ab) — 07
dp

oL

%(5757@@,3075*) =0,
of (yi(w* eT; —b") + & —p*) =0,
Bi& =0,

5 p" =0,

yi(w" exT; —b")+ & —p" >0,

> 0,
B; =0,
6" >0,
£ >0,
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them to O we obtain,

Plugging these back into the Lagrangian gives us our dual optimization problem.

Dual »-SVC

Taking the partial derivatives of L(a, 3, 6, w, &, p, b) with respect to the primal variables and setting
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Dual »-SVC

This gives us the a training algorithm for softmargin v-SVC with the kernel k(z;, ;) substituted for
the dot product in input space,

l l
1
! — —  —
maaxqb (Oé) = maax —5 E E yiyjaiozjk:(aci,mj)

i=1j=1

subject to the constraints,

l

Zyiai =0
i=1

l

Zai > v
i=1

1/l>a; >0,i=1,...,1

Compared to the dual optimization problem of C-SVCs we have two differences: (a) we lost the term
>« in the objective function and (b) we have an additional constraint due to p.
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Dual »-SVC

Turns out that our decision function stays the same as in the C classifiers,

l
f(Z) = sign (Z oy k(Z;,T) — b*> .
i=1

Here, as before, b* can be computed from support vectors that are not bound,
0 < a; <1/L.
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(source:

Figure7.9 Toy problem (task: separate circles from disks) solved using v-SV classification,
with parameter values ranging from » = 0.1 (top left) to ¥ = 0.8 (bottom right). The larger
we make v, the more points are allowed to lie inside the margin (depicted by dotted lines).
Results are shown for a Gaussian kernel, k(x, x') = exp(—||x — x'||?).

"Learning with Kernels", Scholkopf and Smola, MIT, 2002)

—p. 9/1



Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the

toy example in Figure 7.9.

Note that v upper bounds the fraction of errors and lower bounds the fraction of SVs, and

that increasing v, i.e., allowing more errors, increases the margin.

v 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
fraction of errors | 0.00 0.07 025+ {0:32 0.39 0.50 0.61 0.71
fraction of SVs 0.29 0.36 043 | 046 057 | 0.68 | 079 | 0.86
margin p/||wl| 0.005 | 0.018 | 0.115 | 0.156 | 0.364 | 0.419 | 0.461 | 0.546

(source: "Learning with Kernels", Scholkopf and Smola, MIT, 2002)
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In -SVR we want to have our € automatically computed. This gives rise to the following
primal optimization problem

min  ¢(w,&, € ,e,b) =
ﬁ’g?gl ?s?b

_ 1 O ,
wew + C - (V&—I—E;(fz—l—ﬁz))

N | —

subjectto (wew; —b) —y; e+
Yy — (wex; —b) <e+¢&;
§ >0
& >0
>0

Notice that here the term ve determines how much the size of the ¢ tube contributes to
the optimization problem.
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Dual v-SVR

This gives rise to the dual,

max¢ (o, @ ) = 93}/{2(0@—04 )yz__ ZZ(O” o5 )(043 ;)k(fzafy)

aa’ 1131

subject to the constraints,

- Our model is,
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Figure 9.6 1v-SV regression with v = 0.2 (left) and v = 0.8 (right). The larger v allows more
points to lie outside the tube (see Section 9.3). The algorithm automatically adjusts € to 0.22
(left) and 0.04 (right). Shown are the sinc function (dotted), the regression f and the tube

o =
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