ν -SVMs

In the traditional softmargin classification SVM formulation we have a penalty constant C such that

$$C \propto \frac{1}{\text{size of margin}}.$$

Furthermore, there is no *a priori* guidance as to what *C* should be set to - the default is a value of 1. However, the precise value needs to be determined experimentally.

ν -SVMs

Schölkopf *et al.* suggest an alternative formulation of *softmargin SVMs based on the* ν *parameter*^{*a*} with $\nu \in [0, 1]$.

The advantages of the ν parameter formulation are that it represents an upper bound on the fraction of number of margin errors allowed,

 $\nu = .1 \rightarrow$ a max. of 10% of training set can be margin errors

 $\nu = .8 \rightarrow$ a max. of 80% of training can be margin errors

and that it is proportional to the size of the margin,

 $u \propto \text{size of margin}$

This implies that determining a value for ν is a more intuitive process that finding a value for the penalty constant C.

^aB. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. *New Support Vector Algorithms*. Neural Computation, 12:12071245, 2000.

ν-SVC

We can formulate the ν -SVC^{*a*} problem in the primal version as follows,

$$\min_{\overline{w},\overline{\xi},\rho,b}\phi(\overline{w},\overline{\xi},\rho) = \frac{1}{2}\overline{w}\bullet\overline{w} - \nu\rho + \frac{1}{l}\sum_{i=1}^{l}\xi_i$$

subject to
$$y_i(\overline{w} \bullet \overline{x}_i - b) \ge \rho - \xi_i$$

 $\xi_i \ge 0$
 $\rho \ge 0$

Here $\overline{\xi}$ represents the set of slack variables as before.

Observations:

- We no longer have a constant margin of value 1, instead we consider the size of the margin an explicit optimization variable ρ .
- Observe that if $\overline{\xi} = \overline{0}$ then the margin is $2\rho/\overline{w} \bullet \overline{w}$.
- We don't directly penalize the size of the margin errors, instead we penalize the size of the margin term $\nu \rho$.

 $^{^{}a}\nu$ -SVC means ν support vector classification.

The Lagrangian,

$$L(\overline{\alpha}, \overline{\beta}, \delta, \overline{w}, \overline{\xi}, \rho, b) = \frac{1}{2}\overline{w} \bullet \overline{w} - \nu\rho + \frac{1}{l} \sum_{i=1}^{l} \xi_{i}$$
$$- \sum_{i=1}^{l} \alpha_{i} (y_{i}(\overline{w} \bullet \overline{x}_{i} - b) - \rho + \xi_{i})$$
$$- \sum_{i=1}^{l} \beta_{i} \xi_{i}$$
$$- \delta\rho$$

with $\overline{\alpha}_i, \overline{\beta}_i, \delta \geq 0.$

Where the optimization problem is

$$\max_{\overline{\alpha},\overline{\beta},\delta} \min_{\overline{w},\overline{\xi},\rho,b} L(\overline{\alpha},\overline{\beta},\delta,\overline{w},\overline{\xi},\rho,b).$$

KKT Conditions

A solution $\overline{\alpha}^*, \overline{\beta}^*, \delta^*, \overline{w}^*, \overline{\xi}^*, b^*$, and ρ^* has to satisfy the KKT conditions,

$$\begin{split} \frac{\partial L}{\partial \overline{w}}(\overline{\alpha},\overline{\beta},\delta,\overline{w}^*,\overline{\xi},\rho,b) &= 0, \\ \frac{\partial L}{\partial \xi_i}(\overline{\alpha},\overline{\beta},\delta,\overline{w},\xi_i^*,\rho,b) &= 0, \\ \frac{\partial L}{\partial \rho}(\overline{\alpha},\overline{\beta},\delta,\overline{w},\overline{\xi},\rho^*,b) &= 0, \\ \frac{\partial L}{\partial b}(\overline{\alpha},\overline{\beta},\delta,\overline{w},\overline{\xi},\rho,b^*) &= 0, \\ \alpha_i^*(y_i(\overline{w}^* \bullet \overline{x}_i - b^*) + \xi_i^* - \rho^*) &= 0, \\ \beta_i^*\xi_i^* &= 0, \\ y_i(\overline{w}^* \bullet \overline{x}_i - b^*) + \xi_i^* - \rho^* &\geq 0, \\ \alpha_i^* &\geq 0, \\ \beta_i^* &\geq 0, \\ \delta^* &\geq 0, \\ \xi_i^* &\geq 0, \\ \xi_i^* &\geq 0, \end{split}$$

for i = 1, ..., l.

- p. 5/1

Taking the partial derivatives of $L(\overline{\alpha}, \overline{\beta}, \delta, \overline{w}, \overline{\xi}, \rho, b)$ with respect to the primal variables and setting them to 0 we obtain,

$$\overline{w} = \sum_{i=1}^{l} \alpha_i y_i \overline{x}_i$$
$$\alpha_i + \beta_i = \frac{1}{l}$$
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
$$\sum_{i=1}^{l} \alpha_i = \nu + \delta$$

Plugging these back into the Lagrangian gives us our dual optimization problem.

This gives us the a training algorithm for softmargin ν -SVC with the kernel $k(\overline{x}_i, \overline{x}_j)$ substituted for the dot product in input space,

$$\max_{\overline{\alpha}} \phi'(\overline{\alpha}) = \max_{\overline{\alpha}} \left(-\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} y_i y_j \alpha_i \alpha_j k(\overline{x}_i, \overline{x}_j) \right)$$
subject to the constraints,
$$\sum_{i=1}^{l} y_i \alpha_i = 0$$
$$\sum_{i=1}^{l} \alpha_i \ge \nu$$
$$1/l \ge \alpha_i \ge 0, i = 1, \dots, l$$

Compared to the dual optimization problem of C-SVCs we have two differences: (a) we lost the term $\Sigma \alpha_i$ in the objective function and (b) we have an additional constraint due to ρ .

Turns out that our decision function stays the same as in the C classifiers,

$$\hat{f}(\overline{x}) = \operatorname{sign}\left(\sum_{i=1}^{l} \alpha_i^* y_i k(\overline{x}_i, \overline{x}) - b^*\right).$$

Here, as before, b^* can be computed from support vectors that are not bound, $0 < \alpha_i < 1/l$.

Figure 7.9 Toy problem (task: separate circles from disks) solved using ν -SV classification, with parameter values ranging from $\nu = 0.1$ (top left) to $\nu = 0.8$ (bottom right). The larger we make ν , the more points are allowed to lie inside the margin (depicted by dotted lines). Results are shown for a Gaussian kernel, $k(x, x') = \exp(-||x - x'||^2)$.

(source: "Learning with Kernels", Schölkopf and Smola, MIT, 2002)

ν-SVC

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the toy example in Figure 7.9.

Note that ν upper bounds the fraction of errors and lower bounds the fraction of SVs, and that increasing ν , i.e., allowing more errors, increases the margin.

ν	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
fraction of errors	0.00	0.07	0.25	0.32	0.39	0.50	0.61	0.71
fraction of SVs	0.29	0.36	0.43	0.46	0.57	0.68	0.79	0.86
margin $\rho / \ \mathbf{w}\ $	0.005	0.018	0.115	0.156	0.364	0.419	0.461	0.546

(source: "Learning with Kernels", Schölkopf and Smola, MIT, 2002)

ν -SVR

In ν -SVR we want to have our ε automatically computed. This gives rise to the following primal optimization problem

$$\min_{\overline{w},\overline{\xi},\overline{\xi}',\varepsilon,b}\phi(\overline{w},\overline{\xi},\overline{\xi}',\varepsilon,b) = \frac{1}{2}\overline{w} \bullet \overline{w} + C \cdot \left(\frac{\nu\varepsilon}{n} + \frac{1}{n}\sum_{i=1}^{n}(\xi_i + \xi_i')\right)$$

subject to

$$(\overline{w} \bullet \overline{x}_i - b) - y_i \le \varepsilon + \xi'_i$$

$$y_i - (\overline{w} \bullet \overline{x}_i - b) \le \varepsilon + \xi_i$$

$$\xi_i \ge 0$$

$$\xi_i^* \ge 0$$

$$\varepsilon \ge 0$$

Notice that here the term $\nu \varepsilon$ determines how much the size of the ε tube contributes to the optimization problem.

Dual v-SVR

This gives rise to the dual,

$$\begin{aligned} \max_{\overline{\alpha},\overline{\alpha}'} \phi'(\overline{\alpha},\overline{\alpha}') &= \max_{\overline{\alpha},\overline{\alpha}'} \sum_{i=1}^{l} (\alpha_i - \alpha_i') y_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} (\alpha_i - \alpha_i') (\alpha_j - \alpha_j') k(\overline{x}_i,\overline{x}_j) \end{aligned}$$
subject to the constraints,
$$\begin{aligned} \sum_{i=1}^{l} (\alpha_i - \alpha_i') &= 0 \\ \sum_{i=1}^{l} (\alpha_i' + \alpha_i) \leq C \cdot \nu \\ C/l \geq \alpha_i, \alpha_i' \geq 0, i = 1, \dots, l\end{aligned}$$

Our model is,

$$\hat{f}(\overline{x}) = \sum_{i=1}^{l} (\alpha_i - \alpha'_i) k(\overline{x}_i, \overline{x}) - b.$$

ν -SVR

Figure 9.6 ν -SV regression with $\nu = 0.2$ (left) and $\nu = 0.8$ (right). The larger ν allows more points to lie outside the tube (see Section 9.3). The algorithm automatically adjusts ε to 0.22 (left) and 0.04 (right). Shown are the sinc function (dotted), the regression *f* and the tube $f \pm \varepsilon$.