
ν-SVMs
In the traditional softmargin classification SVM formulation we have a penalty constant C

such that

C ∝ 1

size of margin
.

Furthermore, there is no a priori guidance as to what C should be set to - the default is a
value of 1. However, the precise value needs to be determined experimentally.
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ν-SVMs
Schölkopf et al. suggest an alternative formulation of softmargin SVMs based on the ν

parametera with ν ∈ [0, 1].

The advantages of the ν parameter formulation are that it represents an upper bound on
the fraction of number of margin errors allowed,

ν = .1 → a max. of 10% of training set can be margin errors

ν = .8 → a max. of 80% of training can be margin errors

and that it is proportional to the size of the margin,

ν ∝ size of margin

This implies that determining a value for ν is a more intuitive process that finding a value
for the penalty constant C.

aB. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New Support Vector Algorithms. Neural Computation,

12:12071245, 2000.

– p. 2/1



ν-SVC
We can formulate the ν-SVCa problem in the primal version as follows,

min
w,ξ,ρ,b

φ(w, ξ, ρ) =
1

2
w • w − νρ +

1

l

lX
i=1

ξi

subject to yi(w • xi − b) ≥ ρ − ξi

ξi ≥ 0

ρ ≥ 0

Here ξ represents the set of slack variables as before.

Observations:

We no longer have a constant margin of value 1, instead we consider the size of the margin an
explicit optimization variable - ρ.

Observe that if ξ = 0 then the margin is 2ρ/w • w.

We don’t directly penalize the size of the margin errors, instead we penalize the size of the
margin - term νρ.

aν-SVC means ν support vector classification.
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Dual ν-SVC
The Lagrangian,

L(α, β, δ, w, ξ, ρ, b) =
1

2
w • w − νρ +

1

l

lX
i=1

ξi

−
lX

i=1

αi(yi(w • xi − b) − ρ + ξi)

−
lX

i=1

βiξi

− δρ

with αi, βi, δ ≥ 0.

Where the optimization problem is

max
α,β,δ

min
w,ξ,ρ,b

L(α, β, δ, w, ξ, ρ, b).
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KKT Conditions
A solution α∗, β

∗
, δ∗, w∗, ξ

∗
, b∗, and ρ∗ has to satisfy the KKT conditions,

∂L

∂w
(α, β, δ, w∗, ξ, ρ, b) = 0,

∂L

∂ξi

(α, β, δ, w, ξ∗
i , ρ, b) = 0,

∂L

∂ρ
(α, β, δ, w, ξ, ρ

∗
, b) = 0,

∂L

∂b
(α, β, δ, w, ξ, ρ, b

∗
) = 0,

α∗
i (yi(w

∗ • xi − b∗) + ξ∗
i − ρ∗) = 0,

β∗
i ξ∗

i = 0,

δ∗ρ∗ = 0,

yi(w
∗ • xi − b∗) + ξ∗

i − ρ∗ ≥ 0,

α∗
i ≥ 0,

β∗
i ≥ 0,

δ
∗ ≥ 0,

ξ
∗
i ≥ 0,

for i = 1, . . . , l.
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Dual ν-SVC
Taking the partial derivatives of L(α, β, δ, w, ξ, ρ, b) with respect to the primal variables and setting
them to 0 we obtain,

w =

lX
i=1

αiyixi

αi + βi =
1

l
lX

i=1

αiyi = 0

lX
i=1

αi = ν + δ

Plugging these back into the Lagrangian gives us our dual optimization problem.
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Dual ν-SVC
This gives us the a training algorithm for softmargin ν-SVC with the kernel k(xi, xj) substituted for
the dot product in input space,

max
α

φ
′
(α) = max

α

0
@−1

2

lX
i=1

lX
j=1

yiyjαiαjk(xi, xj)

1
A

subject to the constraints,

lX
i=1

yiαi = 0

lX
i=1

αi ≥ ν

1/l ≥ αi ≥ 0, i = 1, . . . , l

Compared to the dual optimization problem of C-SVCs we have two differences: (a) we lost the term
Σαi in the objective function and (b) we have an additional constraint due to ρ.
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Dual ν-SVC
Turns out that our decision function stays the same as in the C classifiers,

f̂(x) = sign

 
lX

i=1

α∗
i yik(xi, x) − b∗

!
.

Here, as before, b∗ can be computed from support vectors that are not bound,
0 < αi < 1/l.
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ν-SVC

(source: "Learning with Kernels", Schölkopf and Smola, MIT, 2002)
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ν-SVC

(source: "Learning with Kernels", Schölkopf and Smola, MIT, 2002)
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ν-SVR
In ν-SVR we want to have our ε automatically computed. This gives rise to the following
primal optimization problem

min
w,ξ,ξ

′
,ε,b

φ(w, ξ, ξ
′
, ε, b) =

1

2
w • w + C ·

 
νε +

1

n

nX
i=1

(ξi + ξ′i)

!

subject to (w • xi − b) − yi ≤ ε + ξ′i
yi − (w • xi − b) ≤ ε + ξi

ξi ≥ 0

ξ∗i ≥ 0

ε ≥ 0

Notice that here the term νε determines how much the size of the ε tube contributes to
the optimization problem.
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Dual ν-SVR
This gives rise to the dual,

max
α,α′ φ′(α, α′) = max

α,α′

lX
i=1

(αi−α′
i)yi−

1

2

lX
i=1

lX
j=1

(αi−α′
i)(αj−α′

j)k(xi, xj)

subject to the constraints,

lX
i=1

(αi − α
′
i) = 0

lX
i=1

(α
′
i + αi) ≤ C · ν

C/l ≥ αi, α′
i ≥ 0, i = 1, . . . , l

Our model is,

f̂(x) =
lX

i=1

(αi − α′
i)k(xi, x) − b.
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ν-SVR
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