
SVMs via Convex
Hulls

Instead of developing SVMs via Langrangian optimization theory we can develop SVM
using convex hulls.
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Convex Hulls
Let X = {x1, x2, . . . , xl} ⊂ R

n, then the convex hull of X is the set of all convex
combinations of its points, H(X). In a convex combination, each point in is assigned a
weight or coefficient in such a way that the coefficients are all non-negative and sum to
one, and these weights are used to compute a weighted average of the points. For each
choice of coefficients, the resulting convex combination is a point in the convex hull, and
the whole convex hull can be formed by choosing coefficients in all possible ways.
Expressing this as a single formula, the convex hull is the set:

H(X) = {
lX

i=1

αixi}

with
Pl

i=1 αi = 1 and αi ≥ 0.
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SVM: The Separable
Case

Let D = {(x1, y1), . . . , (xl, yl)} ⊂ R
n × {+1,−1} be our training data. Consider two

class distributions +1 and -1 and their corresponding hulls H(+1) and H(−1),

We pick the point c ∈ H(+1) to be closest to the -1 class distribution and we pick point
d ∈ H(−1) to be closest to the +1 distribution. Next we draw a vector from d to c such
that

w = c − d

Now, picking the points c and d as we did above and then drawing the vector w is the
same as saying that we want to minimize the length of w, in other words,

min |w| = min
1

2
|w|2 = min

1

2
w • w
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SVM: The Separable
Case

Now consider that c ∈ H(+1) and d ∈ H(−1), therefore

c =
X

xp∈+1

α+
p xp

d =
X

xq∈−1

α−
q xq

Now, let α be the concatenation of α+ and α−with

|α| = |α+| + |α−| = l

then

min
α

1

2
w • w = min

α

1

2

lX

i=1

lX

j=1

yiyjαiαjxi • xj

subject to

lX

i=1

yiαi = 0
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SVM: The Separable
Case

It is worthwhile to take a look at the constraint

lX

i=1

yiαi = 0

We can rewrite this constraint as

|α+|X

i=1

(+1)α+
i +

|α−|X

i=1

(−1)α−
i =

|α+|X

i=1

α+
i −

|α−|X

i=1

α−
i

= 1 − 1

= 0 (if the points fulfill the convex hull property)

– p. 5/



SVM: The Separable
Case

Finally, we have

max
α

−1

2

lX

i=1

lX

j=1

yiyjαiαjxi • xj

subject to

lX

i=1

yiαi = 0

αi ≥ 0

It is interesting to note that this looks very similar to the optimization problem that we
derived via Lagrangian optimization theory.
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SVM: The
Non-Separable Case

The reduced hull RH(X) is defined as

RH(X) = {
lX

i=1

αixi}

with

lX

i=1

αi = 1

C ≥ αi ≥ 0
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SVM: The
Non-Separable Case

The optimization problem then becomes

max
α

−1

2

lX

i=1

lX

j=1

yiyjαiαjxi • xj

subject to

lX

i=1

yiαi = 0

C ≥ αi ≥ 0
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Model

It is easy to show that our model is a support vector machine,

f̂(x) = sign(w∗ • x − b∗)

with

w∗ =
lX

i=1

α∗
i yixi (think w = c − d)

and

b∗ =
lX

i=1

α∗
i yixi • xsv+ − 1
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Reading

C. Bennet – "SVM - Hype or Hallelujah" – available on the course website.
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