Artificial Neural
Networks

Consider the perceptron

Tn

Tn—1

€2

X1

with
f(@) =y = sign ([Z WgTg | + (—1)b> =sign(wex —).
k=1
where w = (w1, wsa,...,wn)and = (z1,x2,...,zy). The free parameters of the

perceptron are w and b and they need to be estimated using some training set D.

—p. V!

Perceptron Learning

let D = {(Z1,y1), (@T2,y2),-.., (@1, y1)} CR" x {+1, -1}
let0 <n <1
w«— 0
b+—0
r — max{|z| | (Z,y) € D}
repeat

for: = 1tol

it £(Z;) # ys then

w— w -+ Aw

b—b— Ab
end if
end for
until £(z;) = y; withj =1,...,1
return (w, b)

where Aw = ny;z; and Ab = ny;r2.

—p. 2

‘ Perceptron Learning

Problem: Learning only works for linearly separable data; otherwise the algorithm will not
converge.

Now assume that for the transfer function we use some function ¢(z) instead of sign(7)

Also assume that we use the squared error at point z;,

A

i sei = (yi — f(7:))?

instead of the standard 0 — 1 loss function usually associated with classification. It still
gives us the correct classification in the sense of a loss function:

Correct classifications: (1 —1)?2 =0and ((—1) — (=1))? =0
Incorrect classifications: (1 — (—1))2 =4 and ((—1) —1)?2 =4

—p. 3/1

Perceptron Learning

With this we can describe the error of a perceptron at a given point z; with a set of

weights w as follows,
— 1 f— 2 L — = 2
Bi(w) = 5 (yi — f(@:))" = 5 (yi —t(wezi —b))

Recall that we swapped out the sign function and replaced with the transfer function t¢.

—p. 4/

Perceptron Learning

Now that we have a convenient error description we can look at changes of the error in
terms of changes of the weights - gradient.

OFE; OFE;
aw]_ ’ ’ awn

VE; = ()

This allows us to rewrite our weight update rule w «+— w + Aw with

—p. 5/1

Perceptron Learning

Observation: We no longer try to learn a decision surface that separate the two classes
perfectly, instead we are trying to learn a decision surface that minimizes the
classification error.

—p. 6/1

Perceptron Learning

In order to compute the gradient we need to take the partial derivatives of the error: The
components of V E; are then,

OF,; 9 1
¢ = —— —(y; —t(wezx; — b 2
ot = e t@em—b)
_ %ai(yi_t(w.@-—b))?
C (g —t@e T — b)) 2 (@WeT; —b)
| ow;

Observation: We can only train using the error gradient if the transfer function is
differentiable!

Note: The sign function is not differentiable because it contains a discontinuity at O.

—p. 7/

A convenient transfer function that looks like the sign function is the sigmoid function,

Looks like the sign function but no discontinuities.

It has a nice derivative,

: 2@ =o@(1 - o(@)

Perceptron Learning

—p. 8/

Perceptron Learning

What about b?

Here we apply another trick - we embed our training instances x € R™ in a higher
dimensional space, namely R™*1, with the embedding function A as follows,

h(z) = h(x1,x2,...,2n) = (1, x1,22,...,%n)

With this our new perceptron looks like this

—p. 91

Perceptron Learning

Observation: The offset is trained as part of the weight training — no explicit offset
needed.

Note: with ¢ = stgmoid and the embedding function A we talk about single layer ANNSs.

—p. 10/1

Perceptron Learning

Our new training algorithm is as follows,

let D = {(Z1,91), (T2,y2),-.., (@1, w)} CR® x {41, -1}
let0 <n <1
w«— 0
repeat

for: = 1tol

w +— w+ nVE,; (W)

1 end for
until E(w) ~ 0
return w

Observation: We don’t require the error to be zero, just the gradient.

OF; = , — t(w e h(x; ﬁwo x;
dw; = —(y; — t(h(z)))awj(h(z;))

—p. 11/1

Multi-Class ANNSs

We can easily extend our single layer ANN to do multi-class classification. Consider a
classification problem with k classes. We can construct an ANN for this as follows:

We now have § = (91, ..., 9x) With

. z € classiiffg=(0,...,9;,...,0)and y; = 1.

—p. 12/1

Multi-Class ANNSs

Our training data needs to be adjusted to the vector notation of class membership,

D ={(Z1,91),---,(@1,7;)} € R" x {0, 1}k

This means that the multi-class ANN is trained component wise and all our previous
result generalize very nicely.

—p. 13/1

Regression with

f is now considered a regression function — still tries to minimize the squared error but
we no longer interpreted the result as a loss-function.

The difference is in the training set,

D= {(z1,y1),---, (@, y)} € R" X R

—p. 14/1

Single Layer ANNSs

Problem with single layer ANNs and classification — only linear decision surface.

Problem with single layer ANNs and regression — only linear regression.

—p. 15/1

