
Artificial Neural
Networks

Consider the perceptron

with

f̂(x) = y = sign

 "
nX

k=1

wkxk

#
+ (−1)b

!
= sign (w • x− b) .

where w = (w1, w2, . . . , wn) and x = (x1, x2, . . . , xn). The free parameters of the
perceptron are w and b and they need to be estimated using some training set D.

– p. 1/1

Perceptron Learning

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

let 0 < η < 1

w ← 0

b← 0

r ← max{|x| | (x, y) ∈ D}
repeat

for i = 1 to l

if f̂(xi) �= yi then

w ← w + ∆w

b← b−∆b

end if

end for

until f̂(xj) = yj with j = 1, . . . , l

return (w, b)

where ∆w = ηyixi and ∆b = ηyir
2.

– p. 2/1

Perceptron Learning

Problem: Learning only works for linearly separable data; otherwise the algorithm will not
converge.

Now assume that for the transfer function we use some function t(x) instead of sign(x).

Also assume that we use the squared error at point xi,

sei = (yi − f̂(xi))
2

instead of the standard 0− 1 loss function usually associated with classification. It still
gives us the correct classification in the sense of a loss function:

Correct classifications: (1− 1)2 = 0 and ((−1)− (−1))2 = 0

Incorrect classifications: (1− (−1))2 = 4 and ((−1)− 1)2 = 4

– p. 3/1

Perceptron Learning

With this we can describe the error of a perceptron at a given point xi with a set of
weights w as follows,

Ei(w) =
1

2
(yi − f̂(xi))

2 =
1

2
(yi − t(w • xi − b))2

Recall that we swapped out the sign function and replaced with the transfer function t.

– p. 4/1

Perceptron Learning

Now that we have a convenient error description we can look at changes of the error in
terms of changes of the weights - gradient.

∇Ei = (
∂Ei

∂w1
, · · · , ∂Ei

∂wn
)

This allows us to rewrite our weight update rule w ← w + ∆w with

∆w = η∇Ei(w)
– p. 5/1

Perceptron Learning

Observation: We no longer try to learn a decision surface that separate the two classes
perfectly, instead we are trying to learn a decision surface that minimizes the
classification error.

– p. 6/1

Perceptron Learning

In order to compute the gradient we need to take the partial derivatives of the error: The
components of ∇Ei are then,

∂Ei

∂wj
=

∂

∂wj

1

2
(yi − t(w • xi − b))2

=
1

2

∂

∂wj
(yi − t(w • xi − b))2

= −(yi − t(w • xi − b))
∂t

∂wj
(w • xi − b)

Observation: We can only train using the error gradient if the transfer function is
differentiable!

Note: The sign function is not differentiable because it contains a discontinuity at 0.

– p. 7/1

Perceptron Learning

A convenient transfer function that looks like the sign function is the sigmoid function,

σ(x) =
1

1 + e−x

Looks like the sign function but no discontinuities.

It has a nice derivative,
dσ

dx
(x) = σ(x)(1− σ(x))

– p. 8/1

Perceptron Learning

What about b?

Here we apply another trick - we embed our training instances x ∈ Rn in a higher
dimensional space, namely Rn+1, with the embedding function h as follows,

h(x) = h(x1, x2, . . . , xn) = (1, x1, x2, . . . , xn)

With this our new perceptron looks like this

– p. 9/1

Perceptron Learning

Observation: The offset is trained as part of the weight training – no explicit offset
needed.

Note: with t = sigmoid and the embedding function h we talk about single layer ANNs.

– p. 10/1

Perceptron Learning

Our new training algorithm is as follows,

let D = {(x1, y1), (x2, y2), . . . , (xl, yl)} ⊂ R
n × {+1,−1}

let 0 < η < 1

w ← 0

repeat

for i = 1 to l

w ← w + η∇Ei(w)

end for

until E(w) ≈ 0

return w

Observation: We don’t require the error to be zero, just the gradient.

∂Ei

∂wj
= −(yi − t(w • h(xi)))

∂t

∂wj
(w • h(xi))

– p. 11/1

Multi-Class ANNs
We can easily extend our single layer ANN to do multi-class classification. Consider a
classification problem with k classes. We can construct an ANN for this as follows:

We now have ŷ = (ŷ1, . . . , ŷk) with

x ∈ class i iff ŷ = (0, . . . , ŷi, . . . , 0) and yi = 1.

– p. 12/1

Multi-Class ANNs
Our training data needs to be adjusted to the vector notation of class membership,

D = {(x1, y1), . . . , (xl, yl)} ∈ Rn × {0, 1}k

This means that the multi-class ANN is trained component wise and all our previous
result generalize very nicely.

– p. 13/1

Regression with
ANNs

f̂ is now considered a regression function – still tries to minimize the squared error but
we no longer interpreted the result as a loss-function.

The difference is in the training set,

D = {(x1, y1), . . . , (xl, yl)} ∈ Rn ×R

– p. 14/1

Single Layer ANNs

Problem with single layer ANNs and classification – only linear decision surface.

Problem with single layer ANNs and regression – only linear regression.

– p. 15/1

