
Multi-Layer ANNs
The perceptron revisited

Recall

Ek(w) =
1

2
(yk − ŷk)2

=
1

2
(yk − t(w • xk)2

=
1

2
(yk − t(ak))2

– p. 1/1



Multi-Layer ANNs
We can now look at the gradient,

∇Ek(w) =
d

dw
Ek(w)

=
1

2

d

dw
(yk − t(ak))2

= −(yk − t(ak))
dt

dw
(ak)

= −(yk − ŷk)
dt

dw
(ak)

= −(yk − ŷk)
dt

dak
(ak)

dak

dw
(chain rule)

= −(yk − ŷk)t′(ak)
d

dw
(w • xk)

= −(yk − ŷk)t′(ak)xk

= δkxk

where δk = −(yk − ŷk)t′(ak) is called the error.

– p. 2/1



Multi-Layer ANNs

Observation: ∇Ek(w) = δkxk , that is, the gradient at x is computed by multiplying the
error term δk with the input x.

Observation: The error term δk is computed by multiplying the observed error (yk − ŷk)

with the derivative of the activation function evaluated at ak,

−(yk − ŷk)t′(ak)

– p. 3/1



Multi-Layer ANNs
Now recall our update rule,

w ← w + ∆w

From before we have

w ← w + η∇Ek(w)

From our discussion above it follows that

w ← w + ηδkxk

Observation: The weights are updated using a scaled version of the input vector. It is
also easy to see that the weights are scaled proportional to the error.

This is called back propagation.

– p. 4/1



Multi-Layer ANNs

Feed forward and backprop neural networks.

– p. 5/1



Multi-Layer ANNs

A simple ANN with a single hidden layer of p nodes and a differentiable transfer function
t,

– p. 6/1



Multi-Layer ANNs

How do we train this kind of network? Observed errors for the hidden layers are no
longer available.

Solution: We systematically backprop the error and use the backprop error instead of the
observed error when training the hidden layer.

– p. 7/1



Multi-Layer ANNs

Consider a single path through the network:

Training instance x is fed forward and the error is back propagated.

– p. 8/1



Multi-Layer ANNs
Now consider the update rule for the weights at the output node o,

wo ← wo + η∇E(w)

with

∇E(w) =
∂E(w)

∂wo

=
∂E(w)

∂ao

∂ao

∂wo

= δoz

where
∂ao

∂wo

=
∂(wo • z)

∂wo

= z (see diagram above)

and
∂E(w)

∂ao

=
1

2

∂

∂wo

(y − t(ao))
2

= −(y − t(ao))t
′
(ao) = −(y − ŷ)t

′
(ao) = δo

This means the update rule for our output node weights becomes,

wo ← wo + ηδoz

– p. 9/1



Multi-Layer ANNs
Now consider updating the weights for the hidden node h,

wh ← wh + η∇E(w)

with

∇E(w) =
∂E(w)

∂wh

=
∂E(w)

∂ah

∂ah

∂wh

=
∂E(w)

∂ah

∂(wh • x)

∂wh

= δhx

with

δh =
∂E(w)

∂ah

=
∂E(w)

∂ao

∂ao

∂ah

= δo
∂ao

∂ah

= whot′(ah)δo

Note:

ao = wo • z = . . . + whozh + . . . = . . . whot(ah) . . .

∂ao

∂ah

= 0 + . . . + 0 + whot
′
(ah) + 0 + . . . + 0 = whot

′
(ah)

– p. 10/1



Multi-Layer ANNs

Therefore:

wh ← wh + ηδhx

or

wh ← wh + ηwhot′(ah)δox

The updates to the hidden weights is now accomplished with entities that are easily
computed.

Also, since we are stacking neurons we are no longer confined to liner surfaces! BUT,
the error surface is also no longer convex and therefore a global minimum is much
harder to find since there might be lots of local minima.

– p. 11/1


