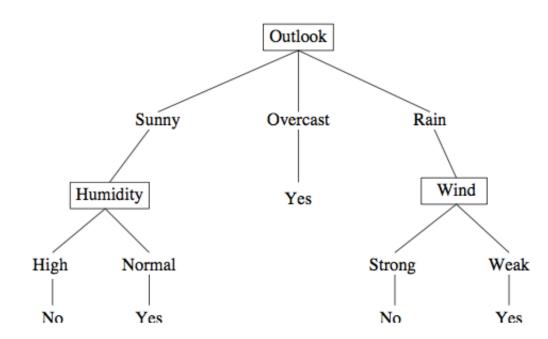
Decision Trees

Consider this binary classification data set:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees

We can describe this data set with the following decision tree:

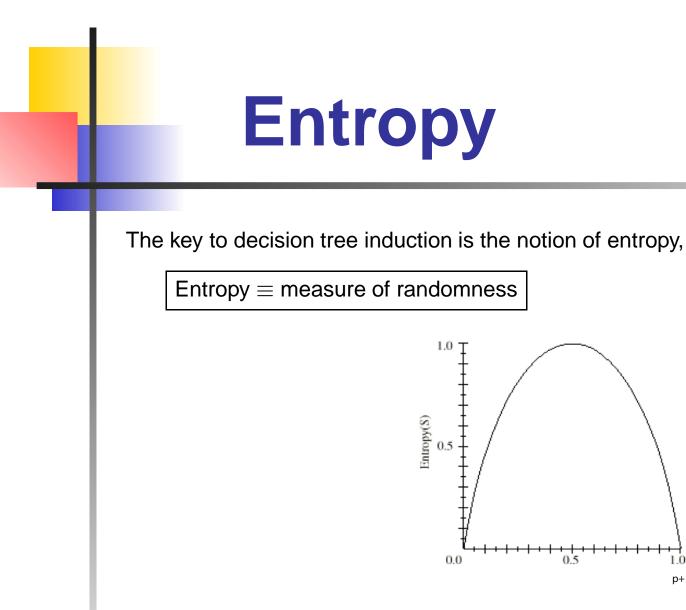


Decision Trees

Day	Outlook	Temperature	Humidity	Wind	PlayTennis				
D1	Sunny	Hot	High	Weak	No				
D2	Sunny	Hot	High	Strong	No		Outlook		
D3	Overcast	Hot	High	Weak	Yes		\sim		
D4	Rain	Mild	High	Weak	Yes				
D5	Rain	Cool	Normal	Weak	Yes	Sunny	Overcast	Rain	
D6	Rain	Cool	Normal	Strong	No			\	
D7	Overcast	Cool	Normal	Strong	Yes			\	
D8	Sunny	Mild	High	Weak	No	Humidity	N	Wi	nd
D9	Sunny	Cool	Normal	Weak	Yes	Trainforty	Yes		$\overline{}$
D10	Rain	Mild	Normal	Weak	Yes				
D11	Sunny	Mild	Normal	Strong	Yes	High Normal		Strong	Weak
D12	Overcast	Mild	High	Strong	Yes				
D13	Overcast	Hot	Normal	Weak	Yes				
D14	Rain	Mild	High	Strong	No	No Yes		No	Yes

All observations in the data set are perfectly described by the tree.

Question: How do we build such trees?



Observation: Entropy is at its maximum if we have a 50%-50% split among the positive and negative examples.

0.5

1.0p+

Observation: Entropy is zero if we have all positive or all negative examples.

Entropy

We can apply entropy to measure the "randomness" of our data set.

Let

$$D = \{(\overline{x}_1, y_1), \dots, (\overline{x}_l, y_l)\} \subseteq A^n \times \{+1, -1\}$$

and

$$l_{+} = |\{(\overline{x}, y) \mid (\overline{x}, y) \land y = +1\}|$$
$$l_{-} = |\{(\overline{x}, y) \mid (\overline{x}, y) \land y = -1\}|$$

then

$$Entropy(D) = -\frac{l_{+}}{l}\log_2(\frac{l_{+}}{l}) - \frac{l_{-}}{l}\log_2(\frac{l_{-}}{l})$$

Now let $p_+ = l_+/l$ and $p_- = l_-/l$ then

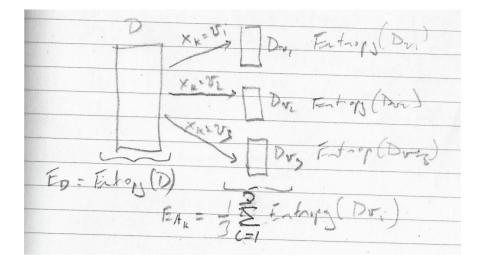
$$Entropy(D) = -p_{+}\log_{2}(p_{+}) - p_{-}\log_{2}(p_{-})$$

Def: We say that an attribute is *informative* if, when the training set is split according to its attribute values, the overall entropy in the training data is reduced.

Example: Consider the attribute $A_k = \{v_1, v_2, v_3\}$ then the split D_{v_i} of D only contains instances that have value v_i of attribute A_k ,

$$D_{v_i} = \{ (\overline{x}, y) \mid x_k = v_i \}$$

We can now split the data set D according to the values of attribute A_k ,



If $E_{A_k} < E_D$ then attribute A_k is informative.

Rather than using the arithmetic mean we use the weighted mean,

$$Entropy(A_k) = \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} Entropy(D_{v_i})$$

Formally we define information gain as,

$$Gain(D, A_k) = Entropy(D) - Entropy(A_k)$$

or

$$Gain(D, A_k) = Entropy(D) - \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} Entropy(D_{v_i})$$

 \Rightarrow The larger the difference the more informative an attribute!

We can now use the gain to build a decision tree top-down (greedy heuristic).

Example: Consider our tennis data set with

Wind = {Weak, Strong}

Then

$$D = [9+, 5-]$$

 $D_{Weak} = [6+, 2-]$
 $D_{Strong} = [3+, 3-]$

Finally,

$$Gain(D, Wind) = Entropy(D) - \sum_{v_i \in A_k} \frac{|D_{v_i}|}{|D|} Entropy(D_{v_i})$$
$$= .94 - \frac{8}{14} .811 - \frac{6}{14} 1$$
$$= .048$$

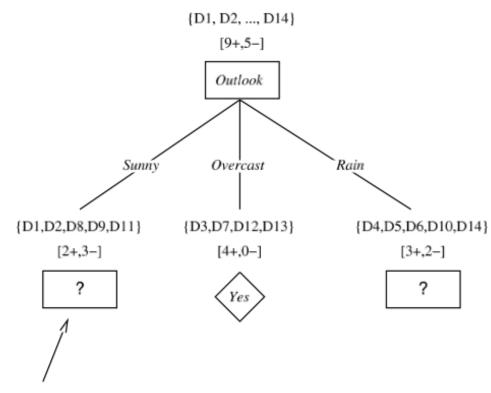
Similarly, for Outlook, Humidity, and Temp,

Gain(D, Outlook) = .246

Gain(D, Humidity) = .151

Gain(D, Temp) = .029

 \Rightarrow This means the *Outlook* will become our root more.



Which attribute should be tested here?

 $S_{sunny} = \{D1, D2, D8, D9, D11\}$

 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$ $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$ $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$

Decision Tree Induction

Basic Algorithm:

- 1. A \leftarrow the "best" decision attribute for a node N.
- 2. Assign A as decision attribute for the node N.
- 3. For each value of A, create new descendant of the node N.
- 4. Sort training examples to leaf nodes.
- 5. IF training examples perfectly classified, THEN STOP. ELSE iterate over new leaf nodes