Decision Trees

Consider this binary classification data set:

Day Outlook Temperature Humidity @ Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes

| D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision Trees

We can describe this data set with the following decision tree:
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Decision Trees

QOutlook  Temperature Humidity Wind  PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No Outlook

D3  Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes Sunny Overcast Rain

D6 Rain Cool Normal  Strong No

D7  Overcast Cool Normal  Strong Yes

D8 Sunny Mild High Weak No T Wind

D9 Sunny Cool Normal Weak Yes Yes -
D10 Rain Mild Normal Weak Yes
D11 Sunny M!Id Normal Strong Yes High Normal Strong Weak
D12 Overcast Mild High Strong Yes | ‘ ‘ ‘
D13  Overcast Hot Normal Weak Yes
D14  Rain Mild High  Strong No Ne Yes Ne Yes

All observations in the data set are perfectly described by the tree.

Question: How do we build such trees?
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The key to decision tree induction is the notion of entropy,

Entropy = measure of randomness

05 +

Entropy(S)

Observation: Entropy is at its maximum if we have a 50%-50% split among the positive

and negative examples.

Observation: Entropy is zero if we have all positive or all negative examples.
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We can apply entropy to measure the “randomness" of our data set.

Let
D = {(flayl)a SRI (flayl)} - A" X {+17 _1}
and
I+ = HE@y | @y Ay =+1}]
- = H@mvy) | @y Ay=—1}
then
[ I+ l_ I_
Entropy(D) = - IOgQ(T) A 10g2(7)

Now letpy =1, /land p_ =1[_/l then

Entropy(D) = —p4 logy(p+) — p— logs (p—)
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Information Gain

Def: We say that an attribute is informative if, when the training set is split according to its
attribute values, the overall entropy in the training data is reduced.

Example: Consider the attribute A = {v1, v2, vz} then the split D, of D only contains instances
that have value v; of attribute Ay,

Dvi — {(fa y) | T = Ui}

We can now split the data set D according to the values of attribute A,
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If Ea, <Ep then attribute A is informative.

—p. 6/1



Information Gain

Rather than using the arithmetic mean we use the weighted mean,

D,
Entropy(Ag) = Z | |DU'|L | Entropy(Dy, )
’UfL'EAk

Formally we define information gain as,

Gain(D, Ay) = Entropy(D) — Entropy(Ag)

Dy,
Gain(D, Ay) = Entropy(D) — Z | |DU'|‘ | Entropy (Do, )
(OF] EAk

= The larger the difference the more informative an attribute!
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Information Gain

We can now use the gain to build a decision tree top-down (greedy heuristic).

Example: Consider our tennis data set with

Wind = {Weak, Strong}

Then
D = [9+,5—]
i D\weak = (64, 2—]
DStrong = [3+,3-]
Finally,

D,,
Gain(D, Wind) = Entropy(D) — Z | |Di | Entropy (D, )
v EAL

3 6
=.94 - — 811 - —1
14 14

= .048
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Information Gain

Similarly, for Outlook, Humidity, and Temp,

Gain(D, Outlook) = .246
Gain(D, Humidity) = .151
Gain(D, Temp) = .029

=> This means the Outlook will become our root more.
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Information Gain

(D], D2, .., DI4)
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Suniy (hvercast Rain
[{D1,.D2.DE.DY.DI11) {D3,D7,D12,D13} [D4,D5.D6,D10,D 14}
[2+,3-] [4+,0-] [3+,2-]

A

; :
| /

Which attribute should be tested here?

Ssunny = [D1.D2.D8,D9.D11]

Gain (Syypny » Humidity) = 970 - (3/5)0.0 - (2/5) 0.0 = 970
Gain (Sgypny . Temperature) = 970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = 570

Gain (Syyppy. Wind) = 970 — (2/5) 1.0 — (3/5) 918 = 019
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Information Gain

Decision Tree Induction
Basic Algorithm:

1. A « the “best" decision attribute for a node N.

2. Assign A as decision attribute for the node N.

3. For each value of A, create new descendant of the node N.
4. Sort training examples to leaf nodes.

5. IF training examples perfectly classified, THEN STOP.
ELSE iterate over new leaf nodes
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