
Decision Trees
Consider this binary classification data set:
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Decision Trees
We can describe this data set with the following decision tree:
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Decision Trees

All observations in the data set are perfectly described by the tree.

Question: How do we build such trees?
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Entropy

The key to decision tree induction is the notion of entropy,

Entropy ≡ measure of randomness

p+

Observation: Entropy is at its maximum if we have a 50%-50% split among the positive
and negative examples.

Observation: Entropy is zero if we have all positive or all negative examples.
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Entropy

We can apply entropy to measure the “randomness" of our data set.

Let

D = {(x1, y1), . . . , (xl, yl)} ⊆ An × {+1,−1}
and

l+ = |{(x, y) | (x, y) ∧ y = +1}|
l− = |{(x, y) | (x, y) ∧ y = −1}|

then

Entropy(D) = − l+

l
log2(

l+

l
) − l−

l
log2(

l−
l

)

Now let p+ = l+/l and p− = l−/l then

Entropy(D) = −p+ log2(p+) − p− log2(p−)
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Information Gain
Def: We say that an attribute is informative if, when the training set is split according to its
attribute values, the overall entropy in the training data is reduced.

Example: Consider the attribute Ak = {v1, v2, v3} then the split Dvi
of D only contains instances

that have value vi of attribute Ak,

Dvi
= {(x, y) | xk = vi}

We can now split the data set D according to the values of attribute Ak,

If EAk
< ED then attribute Ak is informative.
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Information Gain
Rather than using the arithmetic mean we use the weighted mean,

Entropy(Ak) =
X

vi∈Ak

|Dvi |
|D| Entropy(Dvi)

Formally we define information gain as,

Gain(D, Ak) = Entropy(D) − Entropy(Ak)

or

Gain(D, Ak) = Entropy(D) −
X

vi∈Ak

|Dvi |
|D| Entropy(Dvi)

⇒ The larger the difference the more informative an attribute!
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Information Gain
We can now use the gain to build a decision tree top-down (greedy heuristic).

Example: Consider our tennis data set with

Wind = {Weak, Strong}

Then

D = [9+, 5−]

DWeak = [6+, 2−]

DStrong = [3+, 3−]

Finally,

Gain(D,Wind) = Entropy(D) −
X

vi∈Ak

|Dvi |
|D| Entropy(Dvi)

= .94 − 8

14
.811 − 6

14
1

= .048
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Information Gain
Similarly, for Outlook, Humidity, and Temp,

Gain(D,Outlook) = .246

Gain(D, Humidity) = .151

Gain(D,Temp) = .029

⇒ This means the Outlook will become our root more.
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Information Gain
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Information Gain
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