
Agents in the Quake Engine

!  We will be studying agents in the artificial
world of the Quake II game engine

!  Quake + Agent = Quagent
!  Since the Quake engine is just a

software system it would be easy to
make supersmart agents that can
perceive everything

!  Here we limit the agents by the notion of
embodiment.

Embodiment

!  A software agent could perceive global state information.
!  An embodied agent can only perceive information

embedded in its immediate local vicinity through its
“senses.”

Environment

Agent

Environment

Perception
Horizon Embodied

Agent

Embodiment

!  The exact nature of the senses depends on the virtual world
the embodied agent inhabits.

!  Game engines tend to emulate aspects of the physical
world, therefore embodied agents in games tend to have
senses that are modeled after our own or other creatures in
our physical world:
"  Vision
"  Sense of touch (bumping into things, etc.)
"  Sense of locomotion (e.g., direction, speed)
"  Introspection, well-being

As a consequence of embodiment the embodied agent has

only limited information to base decisions on and limited
computational capabilities to make decisions – bounded
rationality.

Embodiment

!  Embodiment entails having a body (albeit
simulated for embodied agents in virtual
worlds):
"  We need to actively move the body

expending energy and plan our route.
"  The body can only move according to the

abilities of the embodied agent.
"  The body ages.
"  The body occupies space – no two things

can exist in the same location in the
simulated world.

The Quagent World

!  Worlds are simulated using the Quake II game
engine.
"  Simple worlds are provided to you by default:

•  Empty Room
•  Obstacle Room
•  etc.

"  You can build your own world (level design).
"  Or explore other more complicated worlds using

your embodied agents.

Quagents

!  Quagent ≡ Quake Agent
!  A quagent is an embodied agent that inhabits

a simulated world.
!  The unique property of quagents is that we

have access to their “brains.”

Quake II World

Quagent

Java API
Prolog API

Quagents

! The Java and Prolog APIs provide
access to the embodied agent body:
" Senses
" State
" Locomotion

! We can write code to control the
embodied agents

Prolog ≡ Programming in Logic API ≡ Application Programming Interface

Quagent Java API
class Quagent {
 // spawn a new quagent
 public Quagent () throws Exception {...}
 public Quagent (String hostName) throws Exception {...}

 // Actions
 public void walk(int distance) throws Exception {...}
 public void turn(int angle) throws Exception {...}
 public void pickup(String itemName) throws Exception {...}
 public Events drop(String itemName) throws Exception {...}

 // Perception
 public void radius(float radius) throws Exception {...}
 public void rays(int no_of_rays) throws Exception {...}
 public void cameraon() throws Exception {...}
 public void cameraoff() throws Exception {...}

 //Proprioception
 public void where() throws Exception {...}
 public void inventory() throws Exception {...}
 public void wellbeing() throws Exception {...}

 //Event Retrieval
 public Events events() throws Exception {...}

 // Abandon
 public void close() throws Exception {...}
}

Quagent Java API

!  The Java API is asynchronous.
!  The reason: quagents can generate multiple,

asynchronous messages called events to the brain as a
result of a command or the environment.

!  These events are captured in the Events object.
!  Possible events:

"  OK ([Echo])
•  echos for positive confirmation, as in a submarine movie

"  ERR ([Echo]) [Error Description]
•  can't begin to do command

"  TELL [Event] [Parameters]
•  asynchronous message from quagent: provides

information about it’s internal state and other parameters

Quagent Java API
 // connect to a new quagent
 Quagent q = new Quagent();

 try {
 int dist = (int)(Math.random()*100.0);

 // walk command
 q.walk(dist);

 // get position
 q.where();

 // get wellbeing
 q.wellbeing();

 // get events

 printEvents(q.events());

 } catch (QDiedException e) {
 System.out.println(“quagent died!");
 }

 // abandon quagent
 q.close();

Java API Details

!  Walk command, ‘walk(distance)’
"  Desire quagent to start walking in current direction. Bot will, at best,

start walking in the right direction and silently stop when distance is
reached.

"  GOTCHA: The quagent is really a bounding box and some
graphics that change, often in a cycle, when it is doing something,
for example walking. The "realistic" look requires that the quagent
move unequal forward distances between the various images that
depict its action. Thus your quagents take "different sized steps"
during their walk cycle. Therefore, they only approximate the
distance in the walk command, and if you are counting steps (ticks)
or something to compute your own distances, you can be surprised.

"  Response: OK (do walkby <distance>)
"  Error: ERR <error message>
"  Generates a TELL event to inform you how far the quagent actually

walked.
•  TELL STOPPED <actual distance>

Java API Details

!  Turn command, ‘turn(angle)’
"  Angle is in degrees, + (left turn) or - (right turn). Changes

current yaw (orientation).
"  Response: OK (do turnby <angle>)
"  Error: ERR <error message>

!  Pickup command, ‘pickup(“tofu”)’
"  Immediately picks up one of the named items if quagent is

within reach of the item.
"  Response: OK (do pickup <item>)
"  Error occurs if not close enough: ERR <error message>

!  Drop command, ‘drop(“tofu”)’
"  Immediately puts down one of the named items in the

quagent’s inventory.
"  Response: OK (do drop <item>)
"  Error occurs if not in inventory: ERR <error message>

Java API Details

!  Radius command, ‘radius(100.0)’
"  What items are within the given radius? (There is a system-imposed

max-radius).
"  Response: OK (ask radius <radius>) [number of objects] ([object

name] [relative position])*
•  here [relative position] is an (x,y,z) three-vector of relative distances.
•  Example: OK (ask radius 100.0) 2 GOLD -20.0 30.0 0 TOFU -320 -100 0

"  Error: ERR <error message>
!  Rays command, ‘rays(4)’

"  What entities are surrounding quagent in some set of directions. If
number is one, ray's direction is in quagent’s current direction. The
command shoots out rays evenly distributed on a circle around the
robot.

"  Response: OK (ask rays <#>) ([ray_number] [object_name]
[relative_position])+

•  relative_position is as in the radius command. The "world_spawn" entity is
a wall or other game structure.

•  Example: OK (ask rays 2) 1 world_spawn 315.0 277.1 0.0 2 TOFU 200
100 0

"  Error: ERR <error message>

Java API Details

!  Cameraon command, ‘cameraon()’
"  Normally the terminal shows the view from the (first-person) client.

This puts the camera on the quagent.
"  Response: OK (do cameraon)
"  Error: ERR <error message>

!  Cameraoff command, ‘cameraoff()’
"  Puts camera on client (first-person).
"  Response: OK (do cameraon)
"  Error: ERR <error message>

Java API Details

!  Where command, ‘where()’
"  Where is the quagent, how is it oriented, moving how fast?
"  Response: OK (do getwhere) [world state]

•  where [world state] is a vector of coordinates and a velocity: (world_x,
world_y, world_z, roll, pitch, yaw, velocity).

•  Example: OK (do getwhere) 124.5 -366 492 0 0 0 1
"  Error: ERR <error message>

!  Inventory command, ‘inventory()’
"  What is quagent holding?
"  Response: OK (do getinventory) [Inventory]

•  where [Inventory] is (inventory item name)*
•  Example: OK (do getinventory) tofu data

"  Error: ERR <error message>

Java API Details

!  Wellbeing command, ‘wellbeing()’
"  How is quagent doing in its life?
"  Response: OK (do getwellbeing) [well being].

•  Where [well being] is a vector of strings giving the numerical values of
(age, health, wealth, wisdom, energy).

•  Example: OK (do getwellbeing) 720 0 0 0 925.6
"  Error: ERR <error message>
"  Generates a ‘TELL DYING’ event when the quagent dies either of

old age or of low energy.
"  The ‘TELL DYING’ event generates a ‘QDiedException’ Java

exception that you can catch and process.
!  Close command, ‘close()’

"  Abandons the quagent in the quagent world; the quagent dies
immediately (without generating an exception)

IDE’s are verboten

!  IDE’s are tool chains that
hide a lot of functionality

!  In this course we use the
raw tools at the OS level:
"  editors (e.g. notepad++)
"  compilers (e.g. javac)
"  loaders (e.g. java)

Programming Tricks

Running the RandomWalker example quagent program:

 1) start quake2/empty room – by clicking on the appropriate Q2 icon

2) open a command shell window
3) cd into the directory where the java api and example code is.
4) compile all the java code: javac -classpath .;quagent.jar *.java
5) run the example: java -classpath .;quagent.jar RandomWalker

If you want to see/edit the code then right click on the RandomWalker
Java file and select NotePad++ to edit the code.

Make sure you use the code in folder “Java V3”.

Programming Tricks -
Template

 // spawn a new quagent in the world
 q = new Quagent();

 // start a try/catch block and execute the quagent communication
 try {
 // do quagent stuff
 }
 } catch (QDiedException qe) {
 // the quagent died
 System.out.println("bot died!");
 // ...
 } catch (Exception e) {
 // something else bad happened, execute recovery code

 System.out.println(e.getMessage());
 // ...
 }

 // we are all done with this quagent -- abandon
 q.close();

Quagent
Application
Template

Programming Tricks -
Events
!  Events are integral to asynchronous programming
!  Quagents have a very simple event structure:

class Events {
 // constructor

 Events() {...}
 // add an event string to the event object

 public void add(String s) {...}
 // return the number of events in the object

 public int size () {...}
 // return the event at index ix

 public String eventAt(int ix) {...}
}

Programming Tricks -
Events
!  Events are arrays of strings returned from the game

engine,

Events e = q.events();
int n = e.size();
String first = e.eventAt(0);
String last = e.eventAt(n-1);

!  A typical event object might look something like this

0: “OK (do walkby <distance>)”
1: “TELL STOPPED <actual distance>”
2: “OK (ask rays 2) 1 world_spawn 315.0 277.1 0.0 2 TOFU
200 100 0”

Programming Tricks -
Events
 public void parseEventCodes(Events events) {

 // get the individual events from the event object
 for (int ix = 0; ix < events.size(); ix++) {

 // get the event codes
 String eventString = events.eventAt(ix);
 String[] tokens = eventString.split(“\\s+”);
 String eventCode = tokens[0];
 String eventVal = tokens[1];
 String eventParam = tokens[2];

 // do something useful with the codes
 if (eventCode.equals("TELL")) {
 if (eventVal.equals("STOPPED")) {
 System.out.println("Moved: " + eventParam);
 }
 } else if (eventCode.equals("OK")) {
 System.out.println("return status OK");
 } else if (eventCode.equals("ERR")) {
 System.out.println("return status --> error");
 } else {
 continue;
 }
 }

 }
}

Parsing Event
Codes

Programming Tricks -
Events
! Finding events that share a keyword

 public Events findEvents(Events events, String kword) {

 Events newEvents = new Events();

 for (int ix = 0; ix < events.size(); ix++) {
 String e = events.eventAt(ix);
 if (e.indexOf(kword) >= 0) {
 newEvents.add(e);
 }
 }

 return newEvents;

 }

public double parseWalkEvent(String eventString) {
 // TELL STOPPED <number>
 String[] tokens = eventString.split(“\\s+”);

 return Double.parseDouble(tokens[2]);
}

Programming Tricks -
Events
! Computing the distance an embodied

agent walked

Programming Tricks -
Events
! Computing distances with Rays

public Double rayDistance(String eventString)
{

 // NOTE: only works for single ray commands
 // this is what the event looks like:
 // OK (ask rays 1) 1 worldspawn 379.969 54.342 0

 // NOTE: parens are considered white space.

 String[] tokens = eventString.split("[()\\s]+");

 double x = Double.parseDouble(words[6]);
 double y = Double.parseDouble(words[7]);

 double distance = Math.sqrt(x*x + y*y);

 return distance;

}

Interprocess Communication

! Why is it so tricky to program
Quagents?
" The body is represented by one

process
" The brain by another process
" Both processes communicate with

each other by passing messages
" The really tricky part is that these

messages are asynchronous!

IPC ≡ Interprocess Communication

Interprocess Communication

Quake2 World

Quagent

Brain

Interprocess
Communication
Channel
(QuagentSocket)

Process

Interprocess Communication

Synchronous
Communication

P1 P2

Messages Process
executing Process

waiting

Asynchronous
Communication

P1 P2

Messages
Process
executing

No Waiting!
Hand Shaking

Interprocess Communication

!  Asynchronous communication is more natural in our
setting

!  Consider the alternatives:
"  the brain stops working while body is walking
"  the body stops walking while the brain is working

neither of these alternatives is very desirable
violates one of our central dogmas: be as realistic as

possible
we want both processes to be as unconstrained as

possible so that each can perform their respective
function as efficiently as possible

Programming Tricks
 quagent { (TYPE [Botname])? ([variable] [value])* }

 [variable] is one of
 LIFETIME,

 INITIALWISDOM,
 INITIALENERGY,
 INITIALWEALTH,
 INITIALHEALTH,
 ENERGYLOWTHRESHOLD,
 AGEHIGHTHRESHOLD,
 for which [value] is a string to be interpreted as a number, or
 it can be this keyword followed by the coordinates:
 INITIALLOCATION [x] [y] [z]

 Available Quagents:
 soldier
 berserk
 gunner
 infantry
 parasite

 Examples:
 quagent {type soldier initiallocation 128 -236 24.03}
 quagent {type parasite lifetime 5000 initialenergy 1000}
 quagent {type gunner lifetime 6000 initialenergy 2000}

Configuring the
Quagent World:
quagent.config

NOTE:
For each quagent
spawned you will
need a separate
‘quagent’ statement
in the config file
otherwise the quagent
will default to mitsu/soldier

Programming Tricks

 [object] [x] [y] [z]
 where [object] is one of the following

 tofu,
 data,
 battery,
 gold,
 kryptonite`

 for which [x] [y] [z] are strings to be interpreted as numbers.

 Examples:

 data -155 256 0
 gold 0 0 0

Configuring the
Quagent World:
quagent.config

Programming Tricks

! The Command Shell
" you can kill a process running in the

command shell by pressing Cntrl-C
"  the TAB key autocompletes a lot of

command saving you typing
" a quick tutorial is here:

http://www.c3scripts.com/tutorials/msdos/
(link also available from the website)

Programming Tricks

!  JDB – the Java Debugger
"  javac -g –classpath .;quagent.jar <javafile>
"  jdb –classpath .;quagent.jar <classfile>
"  stop in <classname>.main (set a break point)
"  run – execute VM and stop at first break point
"  step - steps into functions
"  next - steps over functions
"  step up - completes a function and returns to the caller
"  cont – continute normal execution of VM
"  print <variable name>
"  locals

Programming Exercise #1 –
The Walking Guard

Spawn Point

Target Point

Path
Room Walls

Write a quagent program in Java that “walks guard“ in the ‘Empty Room’
world in the following fashion.

Note: You can modify one of the example programs to accomplish this.

