
Game Engine Architecture

Game-State Simulator

Controller
Controller

Controller
Renderer

Actions

Updates

Queries

Queries Queries

!  Game-State – the game-state represents
the current state of the world. It knows
about all the objects in the world and
provides access to them so that they can
be queried by all the other components for
information about their current state.

!  Simulator – the simulator encodes the rules
of how the game-state changes based on
the “game physics.” Together with a set of
animations the simulator is responsible for
generating a character’s moves in
response to the actions chosen by the
associated controller.

!  Renderer – together with the game’s
geometry and texture maps, the renderer is
responsible for rendering a depiction of the
game-state; usually with images and
sound.

!  Controller – each character in the game
has at least one controller (“brain”)
associated with it. The controller is
responsible for selecting actions. For
player characters the controller interprets
joystick interactions. For NPCs the
controller consists of the AI and low-level
control.

Source: AI for Computer Games,
John D. Funge, AK Peters, 2004.

Another View of a Controller

Controller Architectures

Non-Deterministic Controllers Deterministic Controllers

Internal
State (Memory)

Outputs Inputs

Non-Deterministic
Controller

Outputs Inputs

Deterministic
Controller

…

Controller Architectures

!  Non-Deterministic Controllers:
"  Can easily accommodate very complex behaviors/

actions.
"  Can be computationally very complex.
"  Different reaction (outputs) to the same situations

(inputs) – non-deterministic behavior.

!  Deterministic Controllers:
"  Can only implement reflexive behavior (behavior that

only depends on the current set of inputs - no
memory/history/internal state).

"  Computationally usually very simple (lookup table).
"  Same reaction (outputs) to the same situations

(inputs) – deterministic behavior

Finite State Machines as
Controllers
!  FSM is one of the simplest and most basic AI models.
!  An FSM consists of

"  Inputs
"  States
"  State transitions

Finite State Machines

Finite State Machines

! From a CS perspective we are used to
FSMs as recognizers of some language

! What language does the following FSM
recognize?

Finite State Machines

! We are interested in generating
behavior given a state and an input

Transducers

Transducers

http://martindevans.me/heist-game/2013/04/16/Finite-State-Machines-(Are-Boring)/

Transducers

http://www.ai-junkie.com/architecture/state_driven/tut_state1.html

Transducers

https://msdn.microsoft.com/en-us/library/aa478972.aspx

FSM Basics

!  A FSM consists of the following 4 components:
"  States which define behavior and may produce

actions
•  exclusive acions on states -- Moore Machine

"  State transitions which are movement from one state
to another and may produce actions

•  exclusive actions on transitions -- Mearly Machine
"  Rules/conditions/labels which must be met to allow a

state transition
"  Input events which may trigger rules/satisfy

conditions/match labels and lead to state transitions

See the tutorial online: http://ai-depot.com/FiniteStateMachines/FSM.html

Moore vs. Mearly

Moore
Machine

Mearly
Machine

Problem: Switching a light on and off.

Quake Monster FSM

Idle Attack

Die

Melee

Dodge

Search

See enemy

Close range

Enemy Fires

Lose Sight

Time Out

Start state

Get Shot Get Shot

Get Shot

See enemy

Close range

state

state transition

input event

Another Example:
FSM for Ghost in Pac-Man

Chase
Player

Run from
Player

Move
Randomly

Die Rise

Pellet
wears
off

Player
eats
Ghost

Eyes reach
Center Room

Player
eats
Pellet

Time to
exit
Center
Room

Player dies

Player re-spawns

Disadvantages of FSM

!  May be too predictable
!  Large FSM with many states and transitions can be

difficult to manage and maintain. The graph may start to
look like “spaghetti.”

!  State oscillation. States may be too rigid. Conditions are
too crisp.
"  For example, there are two states: Flee and Idle.
"  The condition for being in the Flee state is to be within a

distance 5.0 from the enemy. The condition for being in the
Idle state is to be greater than 5.0 from the enemy.

"  Say, the object is 4.9 from the enemy. It is in Flee state, so
it runs away. Now it is 5.1, so it is in Idle state. It randomly
moves around, and goes to 4.9 and gets into the Flee state
again etc.

Implementation
class Monster {
 int state; // 0: Idle 1: Attack 2: Melee 3: Dodge 4: Search 5: Die
 // perhaps should use an enum type here….

 Monster() {state = 0;}

 void Iterate() {
 switch(state) {
 case 0: Move(rand()); break;
 case 1: Chase(); Shoot(); break;
 case 2: Melee(); break;
 case 3: Dodge(); break;
 case 4: FindEnemy(); break;
 case 5: Die(); break;
 }}

 void HandleInput(int eventID) {
 if (eventID== E_INJURED) {
 state = 5;
 } else if (eventID== E_SPOTTED_ENEMY) {
 if ((state==0) || (state==4)) {
 state = 1;
 }
 }
 }
 void Shoot(){…}
 void Melee() {…}
 void Dodge() {…}
 void Chase() {…}
 void FindEnemy() {…}
 void Die() {…}
};

Example FSM

! What would a FSM look like that make
a quagent walk back and forth in a
quake room?

Assignments

! Read Chap 2
! Read FSM online tutorial (see course

website)
! Try to implement Programming

Exercise #1 with a FSM

