
Navigation

! Navigation is the process of
purposefully steering the course of an
entity through a space.

! Navigation differs from plain movement
" Plain movement could be due to such

occurrences like an object falling off a
cliff.

Navigation

! A game world describes a space.

# This has consequences on where items can be placed
 and how agents can move from one position to the next.
#  Quake uses continuous space

Discrete
vs.

Continuous

Navigation

! A game world describes time.

Discrete
vs.

Continuous

# This has consequences on how actions are perceived – smooth vs. choppy.
#  At the human perception level Quake uses continuous time - intervals are
 a couple of milliseconds.

Navigation

!  We want navigation to be
"  Realistic

•  avoid doing silly things

"  Efficient
•  it cannot be computationally expensive

"  Reliable
•  the same navigation strategies should work in

many different scenarios

"  Purposeful
•  it should serve some perceived goal

Navigation

!  Example Scenarios – “Obstacle Avoidance Maneuvers”

Navigation - Options

! Agent Context

In the quagent API
radius and rays calls
return results in
relative coordinates

The where function
returns results in
absolute coordinates

Navigation - Options

! Discrete vs. Continuous Actions

In the quagent
world all actions
are continuous

Navigation – Options

! Senses

Quagents implement point content with the radius command
#  Quagents implement line trace with the rays command
# Quagents implement collision detection with the TELL
 STOPPED event

Interprocess Communication

Example: ... q.walk(256); ...

...

Events events = null;

bool stopped = true;

...

q.walk(256);
stopped = getStopped(q.events());

while(!stopped) {

 // do stuff

 events = q.events();
 stopped = getStopped(events);
}

...

NOTE:
getStopped will return true if it finds the ‘TELL STOPPED’ event,
otherwise it will return false.

Controller Quagent

walk

OK

TELL STOPPED

Walking

Standing

Do stuff
Event
Polling

Steering a Quagent

!  Idea:
" Tell the quagent to walk a very large

distance
" Then use ‘rays’ to see if there are

obstacles
" keep exchanging messages with the

quagent about navigating possible
obstacles

IPC
class Asynch extends Quagent {

 static final int DIST = 20;

 public static void main(String[] args) throws Exception {

 new Asynch();
 }

 Asynch () throws Exception {

 super(); // run the constructer of the super class

 try {
 this.walk(5000);
 while(true) {
 // sense
 this.rays(1);

 Events e = this.events();
 // think & act with event handlers
 handleRays(e);

 handleStopped(e);
 // give the engine a chance to do something
 Thread.currentThread().sleep(100);
 }
 } catch (QDiedException e) { // the quagent died -- catch that exception
 System.out.println("bot died!");
 }

 this.close();

 }

IPC
public void handleRays(Events events) throws Exception {

 for (int ix = 0; ix < events.size(); ix++)
 {
 String e = events.eventAt(ix);

 if (e.indexOf("rays") >= 0)
 {
 // NOTE: only works for single ray commands
 // this is what the event looks like:
 // OK (ask rays 1) 1 worldspawn 379.969 54.342 0
 // NOTE: parens are not included in tokens
 String[] tokens = e.split("[()\\s]+");

 double x = Double.parseDouble(tokens[6]);
 double y = Double.parseDouble(tokens[7]);
 double distance = Math.sqrt(x*x + y*y);

 System.out.println("Distance: " + distance);

 // if the distance is less than DIST ticks then turn 90 degrees left
 if (distance < DIST)
 this.turn(90);
 }
 }

 }
}

IPC

public void handleStoppedEvents events) throws Exception {
 for (int ix = 0; ix < events.size(); ix++)
 {
 String e = events.eventAt(ix);

 if (e.indexOf(”STOPPED") >= 0)
 {
 // probably bumped into something
 this.turn(180);
 // start walking again
 this.walk(5000);
 }
 }

 }
}

The “Sense, Think, Act”
Loop
! The previous example highlighted the

fact that in many cases quagent
control can be embedded in a loop

! The loop will iterate over three kinds
of activities:
" Sensing
" Thinking (computing)
" Acting

The “Sense, Think, Act”
Loop

!  Sense
"  Gather input sensor changes
"  Update state with new values

!  Think
"  Decide what to do

!  Act
"  Execute (any changes to) actions

Sense

Think

Act

Programming Tricks

!  Navigation
"  The radius and rays command return

relative positions
"  That means, once you have found an

object you need to calculate angle and
distance to reach it

"  With rays this is trivial because rays only
“appear in certain angles”

"  With radius command it is a little bit more
difficult…consider…

Programming Tricks

!  The arc-tan can
compute the
angle given the
sides of a triangle:

atan(o/a) = θ

source: http://gamedev.stackexchange.com/questions/14602/what-are-atan-and-atan2-used-for-in-games

Programming Tricks

Programming Tricks

! To compute an angle in you need to
turn you will need to experiment with
the ‘where’ command giving you the
absolute position of the quagent and
the yaw – the angle of rotation around
the vertical axis (z-coordinate) of the
quagent.

Programing Exercise #2

!  Randomly place an object into the Empty
Room using the config file and have a
quagent find it and pick it up – no hard
coding allowed, you will need to search,
find, and navigate to it in order to pick the
item up.

!  Next, put multiple objects into the Empty
Room and repeat the above for multiple
objects in a row – ie. continue searching
and pickup until the quagent dies of old age.

!  Next, do the same things in the Obstacle
Room.

