(,,') UAKLEH

Searching

o Searching is a fundamental problem solving
paradigm in Al

o Recall that we view Al as the computational
part of satisfying a goal; this can in most
cases be viewed as a search

o There are two broad classes of search
algorithms

Uninformed - the search does not take
domain information into account

Informed - the search does take domain
information into account



(Physical) State Space
Search

(,,') UAKLEH

Move (Operator)

o Search operates on a search space

with states where each state

represents a possible position in Y|

physical space 3 cd
L]

o Trees (graphs) are an obvious
representation with states as nodes

and state transitions as links

Initial

o Can be applied to other Al problems
in a variety of ways
Consider responding to an attack; 1

here each state represents a
different defense mode

o Hallmark: have to search the whole 2
tree for a solution.




Search Applied to Puzzles

({) 1 e

o Puzzles can be easily { $ } S
represented by state spaces A : :

o One interesting example is the P —
“Tower of Hanoi.” £ 410 SN

. 7 X

o Each move (operation)results 11 L1}
iIn a new configuration (state) | B

o Brute-force can be used to find NN
a specific state given an initial =
state (find a solution). 4401 144

\

o Problem: State spaces can be Tl L
enormous and brute force o "
search can be slow to find a T14E (44
solution.




(,),; Adversarial Search r- e roe

6
Take 1 .
5
T Take 1
o Adversarial search allows a L 4
computer to find an effective Take 2
strategy for playing against a 2
human. o Take 1
o The Game of Nim shown L 1
o Computer/Human moves restrict the Take 1
search space. Loss

For example, if at the start the
human chooses 1 item, the left
subtree is used.

(®)
o Search is used to identify the next ’ 3
move to make to ensure a win Q 0 Q
o If player-1 moves first then all the ’ ; LY
win states for player-2 are identified (4) 3 9!‘0 0‘6, DC) O

in the tree (positions that force

e 7
player-1 to take the last stone) () () (1)) ﬁ%ﬁk@ Gx?‘:{ #ﬂ“:{
OO O O

&



Generic Search

explored nodes&
/I '



Generic Search

(,,‘) UAKLT

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.
frontier := {(s) : s is a start node};
while frontier is not empty:
select and remove path (ng,..., ngx) from frontier;
if goa/(nk)
return (no, ceey nk);
for every neighbor n of ng
add (ng, ..., ng, n) to frontier;
end while



@

Uninformed Search
Algorithms

o Depth-First-Search (DFS)
o Breadth-First-Search (BFS)

o Uniform Cost Search (UCS)



Depth-First-Search (DFS)

(,,') UAKLEH

o Search each branch to its
greatest depth, backtrack,

explore previously ‘
unexplored branches.

o Simple, but favors depth a
over breadth.

o Note: not usable in trees ° ‘

with possibly infinite

branches 0 °

E.g. trees that represent
some sort of iteration;
classic example is
Prolog proof trees.



@ | DFS Algorithm

procedure DFS(G,v,goal):
% G -- a graph
% v -- start node
% goal -- goal function
let Frontier be a stack
Frontier.push(v)
while Frontier is not empty
n <« Frontier.pop()
If goal(n)
return n
for all neighbors w of v in reverse order do
Frontier.push(w)




@

Breadth-First-Search (BFS)

o Search nodes
shallowest first.

o Favors breadth (1)
over depth. (= o
o Note: can be
(0 ¢

used with infinite

trees! ‘ °



@ | BFS Algorithm

procedure BFS(G,v,goal):
% G -- a graph
% v -- start node
% goal -- goal function
let Frontier be a queue
Frontier.add(v)
while Frontier is not empty
n <« Frontier.pop()
If goal(n)
return n
for all neighbors w of v in reverse order do
Frontier.add(w)




@ | Uniform-Cost Search (UCS)

o Find the least-cost path
through a graph.

o Not all edges the same
cost.

o Goal to find the path
from start to finish with
least cost (A->E).

o Note: this is important in i
navigation, least cost
path to move from one
location to another.

o Can be efficiently be e
implemented with a T A
priority queue. o o




UCS Algorithm

(‘,')UA IRV |

procedure UCS(Graph, root, goal)
n := root
cost:=0
Frontier := priority queue containing n only
while Frontier is not empty
n := Frontier.pop()
iIf goal(n)
return n
for all neighbors w of n
if wis not in Frontier

Frontier.add(w)
if wis in Frontier with higher cost

replace existing node with w




@

Uninformed Search
Algorithms

o Depth-First-Search (DFS)

o Breadth-First-Search (BFS)

o Uniform Cost Search (UCS)

o Depth-Limited-Search (DLS)

o lterative-Deepening Search (IDS)
o Bidirectional Search (BIDI)




#@ Searching an Qll

o Searching is typically the first half of achieving a
goal:

Once a solution is identified we need to schedule/
plan the actions required to achieve this goal.



(,);, Searching

o Basic assumptions
we are given a global navigation target

the environment is given in a discrete representation
(so far we have only considered continuous
representations)

o Goal

given our current location and given the location of
our navigation target

search for a path to reach this target

plan the actions necessary to travel from our current
location to the desired target

respect obstacles!

at

H |
- I B 2|

‘f‘

]
2

-




wﬂ Searching

The floor plan of the ‘Obstacle Room’

Navigation
64x64 ticks Target
4 /
Starting : / :
Point \
K 512 ticks

Search for all possible paths from
the starting point to the target.

Many paths possible -
Seven choices at each node -
Depth limited search - 716



