
Searching

!  Searching is a fundamental problem solving
paradigm in AI

!  Recall that we view AI as the computational
part of satisfying a goal; this can in most
cases be viewed as a search

!  There are two broad classes of search
algorithms
"  Uninformed - the search does not take

domain information into account
"  Informed - the search does take domain

information into account

(Physical) State Space
Search

!  Search operates on a search space
with states where each state
represents a possible position in
physical space

!  Trees (graphs) are an obvious
representation with states as nodes
and state transitions as links

!  Can be applied to other AI problems
in a variety of ways
"  Consider responding to an attack;

here each state represents a
different defense mode

!  Hallmark: have to search the whole
tree for a solution.

Search Applied to Puzzles

!  Puzzles can be easily
represented by state spaces

!  One interesting example is the
“Tower of Hanoi.”

!  Each move (operation) results
in a new configuration (state)

!  Brute-force can be used to find
a specific state given an initial
state (find a solution).

!  Problem: State spaces can be
enormous and brute force
search can be slow to find a
solution.

… …

Adversarial Search

!  Adversarial search allows a
computer to find an effective
strategy for playing against a
human.

!  The Game of Nim shown
!  Computer/Human moves restrict the

search space.
"  For example, if at the start the

human chooses 1 item, the left
subtree is used.

!  Search is used to identify the next
move to make to ensure a win

!  If player-1 moves first then all the
win states for player-2 are identified
in the tree (positions that force
player-1 to take the last stone)

Generic Search

Generic Search

Uninformed Search
Algorithms
! Depth-First-Search (DFS)
! Breadth-First-Search (BFS)
! Uniform Cost Search (UCS)

Depth-First-Search (DFS)

!  Search each branch to its
greatest depth, backtrack,
explore previously
unexplored branches.

!  Simple, but favors depth
over breadth.

!  Note: not usable in trees
with possibly infinite
branches
"  E.g. trees that represent

some sort of iteration;
classic example is
Prolog proof trees.

DFS Algorithm

procedure DFS(G,v,goal):
 % G -- a graph
 % v -- start node
 % goal -- goal function
 let Frontier be a stack
 Frontier.push(v)
 while Frontier is not empty
 n ← Frontier.pop()
 if goal(n)
 return n
 for all neighbors w of v in reverse order do
 Frontier.push(w)

Breadth-First-Search (BFS)

! Search nodes
shallowest first.

! Favors breadth
over depth.

! Note: can be
used with infinite
trees!

BFS Algorithm

procedure BFS(G,v,goal):
 % G -- a graph
 % v -- start node
 % goal -- goal function
 let Frontier be a queue
 Frontier.add(v)
 while Frontier is not empty
 n ← Frontier.pop()
 if goal(n)
 return n
 for all neighbors w of v in reverse order do
 Frontier.add(w)

Uniform-Cost Search (UCS)

!  Find the least-cost path
through a graph.

!  Not all edges the same
cost.

!  Goal to find the path
from start to finish with
least cost (A->E).

!  Note: this is important in
navigation, least cost
path to move from one
location to another.

!  Can be efficiently be
implemented with a
priority queue.

UCS Algorithm
procedure UCS(Graph, root, goal)
 n := root
 cost := 0
 Frontier := priority queue containing n only
 while Frontier is not empty
 n := Frontier.pop()
 if goal(n)
 return n
 for all neighbors w of n
 if w is not in Frontier
 Frontier.add(w)
 if w is in Frontier with higher cost
 replace existing node with w

Uninformed Search
Algorithms
! Depth-First-Search (DFS)
! Breadth-First-Search (BFS)
! Uniform Cost Search (UCS)
! Depth-Limited-Search (DLS)
!  Iterative-Deepening Search (IDS)
! Bidirectional Search (BIDI)

Searching an QII

!  Searching is typically the first half of achieving a
goal:
"  Once a solution is identified we need to schedule/
plan the actions required to achieve this goal.

Searching

!  Basic assumptions
"  we are given a global navigation target
"  the environment is given in a discrete representation

(so far we have only considered continuous
representations)

!  Goal
"  given our current location and given the location of

our navigation target
"  search for a path to reach this target
"  plan the actions necessary to travel from our current

location to the desired target
"  respect obstacles!

Searching

The floor plan of the ‘Obstacle Room’

Starting
Point

Navigation
Target

Search for all possible paths from
the starting point to the target.

Many paths possible -
Seven choices at each node -
Depth limited search - 716

64x64 ticks

512 ticks

