

- Searching is a fundamental problem solving paradigm in Al
- Recall that we view AI as the computational part of satisfying a goal; this can in most cases be viewed as a search
- There are two broad classes of search algorithms
 - Uninformed the search does not take domain information into account
 - Informed the search does take domain information into account

QUAKE I

(Physical) State Space Search

- Search operates on a search space with states where each state represents a possible position in physical space
- Trees (graphs) are an obvious representation with states as nodes and state transitions as links
- Can be applied to other AI problems in a variety of ways
 - Consider responding to an attack; here each state represents a different defense mode
- Hallmark: have to search the whole tree for a solution.

Search Applied to Puzzles

- Puzzles can be easily represented by state spaces
- One interesting example is the "Tower of Hanoi."
- Each move (operation) results in a new configuration (state)
- Brute-force can be used to find a specific state given an initial state (find a solution).
- **Problem**: State spaces can be enormous and brute force search can be slow to find a solution.

Adversarial Search

- Adversarial search allows a computer to find an effective strategy for playing against a human.
- The Game of Nim shown
- Computer/Human moves restrict the search space.
 - For example, if at the start the human chooses 1 item, the left subtree is used.
- Search is used to identify the next move to make to ensure a win
- If player-1 moves first then all the win states for player-2 are identified in the tree (positions that force player-1 to take the last stone)

Generic Search

Generic Search

Input: a graph, a set of start nodes, Boolean procedure goal(n) that tests if n is a goal node. frontier := { $\langle s \rangle$: s is a start node}; while frontier is not empty: select and remove path $\langle n_0, \ldots, n_k \rangle$ from *frontier*; if goal (n_k) return $\langle n_0, \ldots, n_k \rangle$; for every neighbor *n* of n_k add $\langle n_0, \ldots, n_k, n \rangle$ to frontier; end while

Uninformed Search Algorithms

 Depth-First-Search (DFS) • Breadth-First-Search (BFS) • Uniform Cost Search (UCS)

Depth-First-Search (DFS)

- Search each branch to its greatest depth, backtrack, explore previously unexplored branches.
- Simple, but favors depth over breadth.
- Note: not usable in trees with possibly infinite branches
 - E.g. trees that represent some sort of iteration; classic example is Prolog proof trees.

DFS Algorithm

procedure DFS(G,v,goal): % G -- a graph % v -- start node % goal -- goal function let Frontier be a stack Frontier.push(v) while Frontier is not empty $n \leftarrow Frontier.pop()$ if goal(n) return n for all neighbors w of v in reverse order do Frontier.push(w)

Breadth-First-Search (BFS)

 Search nodes shallowest first.

- Favors breadth over depth.
- Note: can be used with infinite trees!

BFS Algorithm

procedure BFS(G,v,goal): % G -- a graph % v -- start node % goal -- goal function let Frontier be a queue Frontier.add(v) while Frontier is not empty $n \leftarrow Frontier.pop()$ if goal(n) return n for all neighbors w of v in reverse order do Frontier.add(w)

Uniform-Cost Search (UCS)

- Find the least-cost path through a graph.
- Not all edges the same cost.
- Goal to find the path from start to finish with *least* cost (A->E).
- Note: this is important in navigation, least cost path to move from one location to another.
- Can be efficiently be implemented with a priority queue.

Investigating Node	Priority Queue		
	A(0)		
2 A	C(1)	D(2)	B(5)
	A(0)	A(0)	A(0)
3 C	D(2)	B(5)	E(8)
	A(0)	A(0)	C(1)
			A(0)
4 D	B(5)	E(7)	E(8)
	A(0)	D(2)	C(1)
		A(0)	A(0)
5 B	E(6)	E(7)	E(8)
	B(5)	D(2)	C(1)
	A(0)	A(0)	A(0)
	Investigating Node A C D B	Investigating Node Pr A(0) (1) A (2) A(0) (2) C (3) D (3) D (3) B (5) A(0) (3)	Investigation Node Priority Quere A(0) D(2) A D(2) A D(2) A A(0) A A(0) A A(0) A D(2) B A(0) A A(0) A A(0) B B(5) B B(5) B B(5) A(0) A(0)

UCS Algorithm

procedure UCS(Graph, root, goal) n := root cost := 0Frontier := priority queue containing n only while Frontier is not empty n := Frontier.pop() if goal(n) return n for all neighbors w of n if w is not in Frontier Frontier.add(w) if w is in Frontier with higher cost replace existing node with w

Uninformed Search Algorithms

Depth-First-Search (DFS)
Breadth-First-Search (BFS)
Uniform Cost Search (UCS)
Depth-Limited-Search (DLS)
Iterative-Deepening Search (IDS)
Bidirectional Search (BIDI)

Searching an QI

- Searching is typically the first half of achieving a goal:
 - Once a solution is identified we need to *schedule*/ plan the actions required to achieve this goal.

Guide Searching

- Basic assumptions
 - we are given a global navigation target
 - the environment is given in a <u>discrete representation</u> (so far we have only considered continuous representations)

Goal

- given our current location and given the location of our navigation target
- search for a path to reach this target
- plan the actions necessary to travel from our current location to the desired target
- respect obstacles!

The floor plan of the 'Obstacle Room'

Search for all possible paths from the starting point to the target.

Many paths possible -Seven choices at each node -Depth limited search - 7¹⁶