
Informed Search 

!  Informed search uses a heuristic to choose 
the best node to search next 
"  Also called Heuristic Search. 
"  Incorporates knowledge (heuristic) of the 

problem domain to minimize search time. 
!  Algorithms define a strategy for node 

selection (which node to search next) rather 
than selecting the next node at random. 



Heuristic   

! A heuristic is a rule of thumb that may 
help solve a problem. 

! Heuristics take problem knowledge 
into account to help guide the search 
in a problem domain. 

 



Best-First Search (Best-FS) 

! Best-FS is related to uniform cost 
(UCS) search in that it takes the 
cummulative cost of the solution into 
account. 

! The big difference is that Best-FS 
uses a heuristic to estimate the 
remaining cost of the solution  



Uniform-Cost Search (UCS) 

!  Find the least-cost 
solution in this state 
tree. 

!  Not all edges the same 
cost. 

!  Goal to find the path 
from start to finish with 
least cost (A->E). 

!  Note: this is important in 
navigation, least cost 
path to move from one 
location to another. 

!  Can be efficiently be 
implemented with a 
priority queue. 

Sort the priority queue according to cumulative cost g(n) 



UCS Algorithm 
procedure UCS(Graph, root, goal) 
   n := root 
   cost := 0 
   Frontier := priority queue containing n only 
   while Frontier is not empty 
      n := Frontier.pop() 
      if goal(n) 
         return n 
      for all neighbors w of n 
         if w is not in Frontier 
            Frontier.add(w) 
         if w is in Frontier with higher cost 
            replace existing node with w 



Best-FS Algorithm 

! Still uses a priority queue (the OPEN list) 
!  Improves the UCS in two ways: 

" Heuristic lookahead 
" Avoid loops in the search by maintaining a 

list of nodes already visited (the CLOSED 
list) 



Best-FS Algorithm 

cost estimate of node n: f(n) = h(n) + g(n) 

Cummulative 
cost 

Heuristic 
cost estimate 

OPEN := [all nodes] 
CLOSED := [ ] 
while OPEN is not empty 
    Sort OPEN according to f(n). 
    Remove the best node from OPEN, call it n, add it to CLOSED. 
    If goal(n) 
       return n 
    Create n's successors. 
    For each successor do: 
       If it is not in CLOSED, add it to OPEN. 



The N-Queens Problem 

!  Classic AI problem 
"  Given an NxN board with N queens on it 
"  Can you move the queens in such a way that 

they will not threaten each other? 

? 



The N-Queens Problem 

!  Queens are only allowed to move 
horizontally in “their” rows. 

!  Convenient representation of 4-Queens 
problem: unsigned 16-bit integer 



The N-Queens Problem 

!  In order to use Best-FS we need to design our 
evaluation function f(n) = g(n) + h(n): 
"  h(n) is number of moves made so far 
"  g(n) is number of queens threatening each other 

•  idea: the more queens are threatening each other the 
more expensive it is to get to a non-threatening board 
configuration. 



The N-Queens Problem 

h=3 

h=0 



N-Queens Problem 



A* Pathfinding  

!  The A* pathfinding algorithm is an exhaustive search 
heuristic which is guaranteed to find the shortest path 
between two points. 

!  Like Best-FS, but evaluates with: 
"  g(n) is cost of the path initial state to current state 
"  h(n) is the estimated cost of the path current state to 

goal state 
!  For Quake2 the basic assumption is that the search area 

is tiled (e.g. square tile) and that the agent moves from 
the center of one tile to the center of the next tile. 

!  Added complication: we need to keep track of the path so 
that we can plan agent actions once the shortest path 
has been found 



The A* Algorithm 

!  Add the starting square to the open list.  
!   Repeat the following: 

"  Sort the open list. Look for the lowest F cost square on the open list. We refer 
to this as the current square. 

"  Switch it to the closed list.  
"  For each square n adjacent to this current square 

•  If n is not walkable or if it is on the closed list, ignore it.  
•  If n is not on the open list, add it to the open list. Make the current 

square the parent of n. Record the F, G, and H costs of n.   
•  If n is on the open list already, check to see if this path to that square is 

better, using G cost as the measure. If so, change the parent of n to the 
current square, and recalculate the G and F scores of n.  

"  Stop when you: 
•  Add the target square to the closed list, in which case the path has been 

found or  
•  Fail to find the target square, and the open list is empty. In this case, 

there is no path.     
!  Save the path. Working backwards from the target square, go from each square to 

its parent square until you reach the starting square.  

Source: A* Pathfinding for Beginners, Patrick Lester, http://www.policyalmanac.org/games/aStarTutorial.htm 

F(n) = G(n) + H(n) 



The A* Algorithm 

Source: http://en.wikipedia.org/wiki/A*_search_algorithm 



The Search Area 

Starting 
Point Target 

Obstacle 

What is the shortest path from the starting point to the target? 

Tiles 



Data Structures 
Parent Pointer 

Closed List 

Open List 

Scores 

Scores: 
F = G + H 
G = the movement cost to move from the starting point to the given square following the generated path - 10 
       points for each vert./horiz. move and 14 points for moves across corners. 
H = the estimated movement cost to move from the given square to the target - “manhattan distance” 



First Iterations 



First Iterations 



First Iterations 

not added – would cut across the corner of the wall 



Final Iterations 



Final Iterations 



Assignments 

! Read Chapter 3 
! Read the A* Tutorial on the course 

website: 
 
http://www.policyalmanac.org/games/aStarTutorial.htm 


