
Greedy Search Algorithms

! Greedy search
" A greedy search algorithm is an

algorithm that uses a heuristic for
making locally optimal choices at each
stage with the hope of finding a global
optimum.

" No backtracking!
•  No reevaluating choices that the

algorithm committed to earlier.

Hill Climbing Search

! Perhaps the most well known greedy
search.

! Hill climbing tries to find the optimum
(top of the hill) by essentially looking
at the local gradient and following the
curve in the direction of the steepest
ascent.

! Problem: easily trapped in a local
optimum (local small hill top)

Hill Climbing Algorithm
 currentNode = startNode;
 loop do
 L = NEIGHBORS(currentNode);
 nextEval = -INF;
 nextNode = NULL;
 for all x in L
 if (EVAL(x) > nextEval)
 nextNode = x;
 nextEval = EVAL(x);
 end if
 end for
 if nextEval <= EVAL(currentNode)
 //Return current node since no better neighbors exist
 return currentNode;
 end if
 currentNode = nextNode;
 end do

Source: http://en.wikipedia.org/wiki/Hill_climbing

Note: Solutions are very sensitive
to the search starting position.

Algorithm Comparison

!  Let’s compare UCS with Hill climbing

• We will find that UCS
will use backtracking to
recover from an initial wrong
guess.

• We will also find that Hill
Climbing will get stuck with
its initial bad guess and will
compute a sub-optimal solution.

UCS Algorithm

OPEN = [initial state]
while OPEN is not empty
do
 0. Sort OPEN according to g(n).
 1. Remove the best node from OPEN, call it n.
 2. If n is the goal state, return n as the solution.
 3. Create n's successors.
 4. For each successor do:
 add it to OPEN.
done

g(n) = cumulative cost of path so far.

Hill Climbing

 currentNode = startNode;
 loop do
 L = NEIGHBORS(currentNode);
 nextCost = INF;
 nextNode = NULL;
 for all x in L
 if (HOPCOST(x) < nextCost)
 nextNode = x;
 nextCost = HOPCOST(x);
 end if
 end for
 if nextNode == targetNode
 return “computed path from startNode to nextNode”;
 end if
 currentNode = nextNode;
 end do

Note: the algorithm has been slightly modified for minimum path finding in a graph.

Observations

! Greedy algorithms can save us a lot
of computation (no sorting of the
priority queue necessary, no
exploration of other alternatives)

! But there are no guarantees of finding
the (optimal) solution.

Try it!

Use
1.  Hill Climbing (graphs)
2.  UCS
3.  Best-FS
to find the cheapest
Path from A to G.

Note: for h(n) in Best-FS use the number of remaining nodes in the path n

3

