@

Greedy Search Algorithms

o Greedy search

A greedy search algorithm is an
algorithm that uses a heuiristic for
making locally optimal choices at each
stage with the hope of finding a global
optimum.

No backtracking!

No reevaluating choices that the
algorithm committed to earlier.



@

Hill Climbing Search

o Perhaps the most well known greedy
search.

o Hill climbing tries to find the optimum
(top of the hill) by essentially looking
at the local gradient and following the
curve in the direction of the steepest
ascent.

o Problem: easily trapped in a local
optimum (local small hill top)



Hill Climbing Algorithm

(,,‘) UK b

currentNode = startNode;

loop do
L = NEIGHBORS(currentNode);
nextEval = -INF;
nextNode = NULL;
forall xin L Note: Solutions are very sensitive

if (EVAL(x) > nextEval) to the search starting position.

nextNode = x;
nextEval = EVAL(x);
end if
end for
if nextEval <= EVAL(currentNode)
//Return current node since no better neighbors exist
return currentNode;
end if
currentNode = nextNode;
end do

Source: http://en.wikipedia.org/wiki/Hill_climbing



(,,‘) UAKLT

Algorithm Comparison

o Let’ s compare UCS with Hill climbing

*We will find that UCS

will use backtracking to
recover from an initial wrong
guess.

*We will also find that Hill
Climbing will get stuck with

its initial bad guess and will
compute a sub-optimal solution.




UCS Algorithm

(,,') 1 e

OPEN = [initial state]
while OPEN is not empty
do
0. Sort OPEN according to g(n).
1. Remove the best node from OPEN, call it n.
2. If n is the goal state, return n as the solution.
3. Create n's successors.
4. For each successor do:
add it to OPEN.
done

g(n) = cumulative cost of path so far.



(,,) UAKET

Hill Climbing

currentNode = startNode;
loop do
L = NEIGHBORS(currentNode);
nextCost = INF;
nextNode = NULL;
forall xin L
if (HOPCOST(x) < nextCost)
nextNode = x;
nextCost = HOPCOST(x);
end if
end for
if nextNode == targetNode
return “computed path from startNode to nextNode”;
end if
currentNode = nextNode;
end do

Note: the algorithm has been slightly modified for minimum path finding in a graph.



@ Observations

(,,') UAKET

o Greedy algorithms can save us a lot
of computation (no sorting of the
priority queue necessary, no
exploration of other alternatives)

o But there are no guarantees of finding
the (optimal) solution.



Try it!

Q)U/\ IRV |

Use
Q 6 1. Hill Climbing (graphs)
5 2. UCS

_ e 8 3. Best-FS
Q 2 . to find the cheapest

Path from A to G.

Note: for h(n) in Best-FS use the number of remaining nodes in the path n



