

Constraint Satisfaction Problems (CSP)

- What is a CSP?
 - Finite set of variables $V_1, V_2, ..., V_n$
 - Nonempty domain of possible values for each variable $D_{V1}, D_{V2}, \dots D_{Vn}$
 - Finite set of constraints C₁, C₂, ..., C_m
 - Each constraint C_i limits the values that variables can take,
 - e.g., $V_3 > 0$ or $V_1 \neq V_2$.
- A state is defined as an assignment of values to some or all variables.
- Consistent assignment
 - assignment does not violate the constraints
- Complete assignment
 - when every variable is mentioned in the assignment

Constraint Satisfaction Problems (CSP)

- A solution to a CSP is a complete assignment that satisfies all constraints.
- If a solution to a CSP exists then it can be found with a backtracking search over the states (assignments).
- Scheduling a meeting of X number of people with constraints on their available time is the premier example of a CSP.

return failure

Backtracking Search

```
function BACKTRACKING-SEARCH(csp)
    return RECURSIVE-BACKTRACKING({}, csp)
function RECURSIVE-BACKTRACKING(assignment, csp)
    if assignment is complete then
         return assignment
    var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES(csp), assignment)
    for each value in DOMAIN-VALUES(var) do
          if value is consistent with assignment according to CONSTRAINTS(csp) then
                     add {var=value} to assignment
                     solution \leftarrow RECURSIVE-BACTRACKING(assignment, csp)
                     if solution ≠ failure then
                              return solution
                     remove {var=value} from assignment
```

Note: *csp* is the representation of our constraint satisfaction problem, VARIABLES(csp) and CONSTRAINTS(csp) are accessor functions that access the respective parts of the respective parts of the representation.

Numeric CSPs

- Our CSP:
 - Two variables: X,Y
 - Domains: [1,9] (for both vars)
 - Constraint: X+Y=X*Y
 - Problem: Find a value for X and Y that satisfies the constraint.
- It is easy to see that the complete assignment {X=2,Y=2} is a solution.
- Compute the solution with recursive backtracking.

Scheduling

- Schedule a meeting:
 - Variables: Peter, Paul, Mary
 - Domains: available times
 - Peter: {10-11,11-12,2-3}
 - Paul: {11-12,1-2}
 - Mary: {10-11,11-12,3-4}
 - Problem: Find a common meeting time.

Scheduling (overconstrained problems)

- Schedule a meeting:
 - Variables: Peter, Paul, Mary
 - Domains: available times
 - Peter: {10-11,11-12,2-3}
 - Paul: {11-12,1-2}
 - Mary: {10-11,2-3,3-4}
 - Problem: Find a common meeting time.
- Over-constrained problems do not have solutions!

 Perhaps the most famous CSP: Color a map such that no two adjacent areas have the same color.

OCSP:

- Variables: areas on the map
- Domain: a set of colors (turns out for maps we only need four different colors - the four color theorem)
- Constraint: no two adjacent areas can have the same color.

 Solutions are assignments satisfying all constraints, e.g.

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=bl ue, T=green}

Reading

Chapter 4 (up to including 4.4)