
Knowledge Representation

! Attribute-Value pairs, frames, and
semantic networks allow you to
represent knowledge very effectively,
but...

!  ...accessing and reasoning with this
knowledge is ad hoc.

! However, our reasoning does not
seem ad hoc...we follow certain
reasoning patterns or rules.

Rule-based Systems

!  Rule-based systems try to mimic our reasoning steps with
sets of if-then rules:

if is-fresh(coffee) then pour(coffee)
if not is-fresh(coffee) then make(coffee)

!  This kind of reasoning was already studied by the ancient
Greeks and is referred to as the modus ponens,

if A then B
A = true

∴ B = true

!  Sometimes rules are also referred to as productions or
production rules.

Rules:
If <condition> then <action>

Read Prolog Tutorial on
course website

Rule-based Systems

Current State of
the Reasoning
(Computation)

Computation step:
!  The interpreter

"  selects a rule from the
rulebase

"  applies the rule to the
symbols in the working
memory

"  updates the working
memory

#  Rules can be selected in an arbitrary order
 only depending on the state of the computation.

Rule-based Systems

!  A convenient framework for rule-based
reasoning is first-order logic (predicate
logic)

!  Rather than arbitrary data structures first-
order logic depends on
"  Quantified Variables
"  Predicates
"  Logical Connectives
"  If-then Rules

First-Order Logic

! Quantified Variables
" Universally quantified variables

∀X – for all objects X

" Existentially quantified variables

∃Y – there exists an object Y

First-Order Logic

!  Predicates
"  Predicates are functions that map their arguments into true/false
"  The signature of a predicate p(X) is

p: Objects → { true, false }

with X ∈ Objects.

"  Example: human(X)
•  human: Objects → { true, false }
•  human(tree) = false
•  human(paul) = true

"  Example: mother(X,Y)
•  mother: Objects × Objects → { true, false }
•  mother(betty,paul) = true
•  Mother(giraffe,peter) = false

First-Order Logic

! We can combine predicates and
quantified variables to make
statements on sets of objects
" ∃X[mother(X,paul)]

•  there exists an object X such that X is the
mother of Paul

" ∀Y[human(Y)]
•  for all objects Y such that Y is human

First-Order Logic

!  Logical Connectives: and, or, not
" ∃F∀C[parent(F,C) and male(F)]

•  There exists an object F for all object C
such that F is a parent of C and F is male.

" ∀X[day(X) and (comfortable(X) or
rainy(X))]

•  For all objects X such that X is a day and
X is either comfortable or rainy.

First-Order Logic

!  If-then rules: A → B
"  ∀X∀Y[parent(X,Y) and female(X) → mother(X,Y)]

•  For all objects X and for all objects Y such that if X is a
parent of Y and X is female then X is a mother.

"  ∀Q[human(Q) → mortal(Q)]
•  For all objects Q such that if Q is human then Q is mortal.

First-Order Logic
∀∅ [female(pam)]
∀∅ [female(liz)]
∀∅ [female(ann)]
∀∅ [female(pat)]

∀∅ [male(tom)]
∀∅ [male(bob)]
∀∅ [male(jim)]

∀∅ [parent(pam,bob)]
∀∅ [parent(tom,bob)]
∀∅ [parent(tom,liz)]
∀∅ [parent(bob,ann)]
∀∅ [parent(bob,pat)]
∀∅ [parent(pat,jim)]

∀X∀Y [parent(X,Y) and female(X) → mother(X)]
∀X∀Y [parent(X,Y) and male(X) → father(X)]
∀X∀Y ∀YZ [parent(X,Y) and parent(X,Z) and not same-person(Y,Z) → siblings(Y,Z)]

How about sister?
How about grandparent?

NOTE: if we only consider the persons
mentioned here, then we are making use
of the closed world assumption.

Assertions

Prolog Prolog = Programming in Logic

Observations:
Think of :- as the ← arrow.
#  Universal quantification is implied
#  Only universally quantified rules are allowed
#  Variables have to start with a capital letter
#  Objects have to be all lower case letters

Executable First-Order Logic

∀∅ [female(pam)]

 becomes

female(pam).

Facts:

∀X∀Y [parent(X,Y) and female(X) → mother(X)]

 becomes

mother(X) :- parent(X,Y) , female(X)

And Connective

Rules:

Prolog – Rules & Facts
female(pam).
female(liz).
female(ann).
female(pat).
male(tom).
male(bob).
male(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

mother(X) :- parent(X,Y) , female(X).
father(X) :- parent(X,Y) , male(X).
siblings(Y,Z) :- parent(X,Y) , parent(X,Z) , not(sameperson(Y,Z)).

facts

rules

What about the ‘sameperson’ predicate?

We can execute this program
by asking questions:

?- female(pam).
?- female(X). ∃X[female(X)]?
?- mother(pam).
?- father(Y).

# Can we prove that ‘female(pam)’ is true?
# Can we prove that there exists an object X
 that make ‘female(X)’ true?
# etc

Prolog – Rules & Facts

isa(cardinal, bird).
isa(bluejay, bird).
isa(boy, human).
isa(girl, human).
isa(computer, artifact).
isa(airplane, artifact).
isa(bird, animal).
isa(human, animal).

has(bird, feathers).
has(bird, wings).
has(human, intelligence).
has(computer, intelligence).
has(airplane, wings).

can_do(Thing, fly) :- has(Thing, wings).
can_do(Thing, think) :- has(Thing, intelligence).
can_do(Thing, live) :- isa(Thing, animal).

facts

rules

We can ask questions:

?- isa(cardinal,bird).
?- isa(bluejay,human).
?- can_do(human,think).

or:

?- isa(cardinal,X).
?- can_do(X,think).

